我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python机器学习pytorch 张量基础教程

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python机器学习pytorch 张量基础教程

正文

张量是一种特殊的数据结构,与数组和矩阵非常相似。在 PyTorch 中,我们使用张量对模型的输入和输出以及模型的参数进行编码。

张量类似于NumPy 的ndarray,除了张量可以在 GPU 或其他硬件加速器上运行。事实上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据(请参阅Bridge with NumPy)。张量也针对自动微分进行了优化(我们将在稍后的Autograd 部分中看到更多相关内容)。如果您熟悉 ndarrays,那么您对 Tensor API 会很快熟悉。

# 导入需要的包
import torch
import numpy as np

1.初始化张量

张量可以以各种方式初始化。请看以下示例:

1.1 直接从列表数据初始化

张量可以直接从列表数据中创建。数据类型是自动推断的。

# 创建python list 数据
data = [[1, 2],[3, 4]]
# 初始化张量
x_data = torch.tensor(data)

1.2 用 NumPy 数组初始化

张量可以从 NumPy 数组创建(反之亦然 - 请参阅Bridge with NumPy)。

# 创建numpy 数组
np_array = np.array(data)
# from_numpy初始化张量
x_np = torch.from_numpy(np_array)

1.3 从另一个张量初始化

新张量保留原张量的属性(形状shape、数据类型datatype),除非显式覆盖。

# 创建和x_data (形状shape、数据类型datatype)一样的张量并全部初始化为1
x_ones = torch.ones_like(x_data) # retains the properties of x_data
print(f"Ones Tensor: \n {x_ones} \n")
# 创建和x_data (形状shape)一样的张量并随机初始化,覆盖其数据类型datatype 为torch.float
x_rand = torch.rand_like(x_data, dtype=torch.float) # overrides the datatype of x_data
print(f"Random Tensor: \n {x_rand} \n")
Ones Tensor:
 tensor([[1, 1],
        [1, 1]])
Random Tensor:
 tensor([[0.5001, 0.2973],
        [0.8085, 0.9395]])

1.4 使用随机值或常量值初始化

shape是张量维度的元组。在下面的函数中,它决定了输出张量的维度。

# 定义形状元组
shape = (2,3,)
# 随机初始化
rand_tensor = torch.rand(shape)
# 全部初始化为1
ones_tensor = torch.ones(shape)
# 全部初始化为0
zeros_tensor = torch.zeros(shape)
print(f"Random Tensor: \n {rand_tensor} \n")
print(f"Ones Tensor: \n {ones_tensor} \n")
print(f"Zeros Tensor: \n {zeros_tensor}")
Random Tensor:
 tensor([[0.0032, 0.5302, 0.2832],
        [0.0826, 0.3679, 0.8727]])
Ones Tensor:
 tensor([[1., 1., 1.],
        [1., 1., 1.]])
Zeros Tensor:
 tensor([[0., 0., 0.],
        [0., 0., 0.]])

2.张量的属性

张量属性描述了它们的形状Shape、数据类型Datatype和存储它们的设备Device。

tensor = torch.rand(3,4)
print(f"Shape of tensor: {tensor.shape}")
print(f"Datatype of tensor: {tensor.dtype}")
print(f"Device tensor is stored on: {tensor.device}")
Shape of tensor: torch.Size([3, 4])
Datatype of tensor: torch.float32
Device tensor is stored on: cpu

3.张量运算

这里全面介绍了超过 100 种张量运算,包括算术、线性代数、矩阵操作(转置、索引、切片)、采样等。

这些操作中的每一个都可以在 GPU 上运行(通常以比 CPU 更高的速度)。

默认情况下,张量是在 CPU 上创建的。我们需要使用 .to方法明确地将张量移动到 GPU(在检查 GPU 可用性之后)。请记住,跨设备复制大张量在时间和内存方面可能会很昂贵!

# We move our tensor to the GPU if available
if torch.cuda.is_available():
    tensor = tensor.to("cuda")

尝试列表中的一些操作。如果您熟悉 NumPy API,您会发现 Tensor API 使用起来轻而易举。

3.1 标准的类似 numpy 的索引和切片:

tensor = torch.ones(4, 4)
print(f"First row: {tensor[0]}")
print(f"First column: {tensor[:, 0]}")
print(f"Last column: {tensor[..., -1]}")
tensor[:,1] = 0
print(tensor)
First row: tensor([1., 1., 1., 1.])
First column: tensor([1., 1., 1., 1.])
Last column: tensor([1., 1., 1., 1.])
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])

3.2 连接张量

您可以用来torch.cat沿给定维度连接一系列张量。另请参阅torch.stack,另一个与torch.cat.

t1 = torch.cat([tensor, tensor, tensor], dim=1)
print(t1)
tensor([[1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.],
        [1., 0., 1., 1., 1., 0., 1., 1., 1., 0., 1., 1.]])

3.3 算术运算

# This computes the matrix multiplication between two tensors. y1, y2, y3 will have the same value
y1 = tensor @ tensor.T
y2 = tensor.matmul(tensor.T)
y3 = torch.rand_like(y1)
torch.matmul(tensor, tensor.T, out=y3)
# This computes the element-wise product. z1, z2, z3 will have the same value
z1 = tensor * tensor
z2 = tensor.mul(tensor)
z3 = torch.rand_like(tensor)
torch.mul(tensor, tensor, out=z3)
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])

3.4单元素张量 Single-element tensors

如果您有一个单元素张量,例如通过将张量的所有值聚合为一个值,您可以使用以下方法将其转换为 Python 数值item()

agg = tensor.sum()
agg_item = agg.item()
print(agg_item, type(agg_item))
12.0 <class 'float'>

3.5 In-place 操作 

将结果存储到操作数中的操作称为In-place操作。它们由_后缀表示。例如:x.copy_(y)x.t_(), 会变x

print(f"{tensor} \n")
tensor.add_(5)
print(tensor)
tensor([[1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.],
        [1., 0., 1., 1.]])
tensor([[6., 5., 6., 6.],
        [6., 5., 6., 6.],
        [6., 5., 6., 6.],
        [6., 5., 6., 6.]])

注意:

In-place 操作可以节省一些内存,但在计算导数时可能会出现问题,因为会立即丢失历史记录。因此,不鼓励使用它们。

4. 张量和NumPy 桥接

CPU 和 NumPy 数组上的张量可以共享它们的底层内存位置,改变一个会改变另一个。

4.1 张量到 NumPy 数组

t = torch.ones(5)
print(f"t: {t}")
n = t.numpy()
print(f"n: {n}")
t: tensor([1., 1., 1., 1., 1.])
n: [1. 1. 1. 1. 1.]

张量的变化反映在 NumPy 数组中。

t.add_(1)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.])
n: [2. 2. 2. 2. 2.]

4.2 NumPy 数组到张量

n = np.ones(5)
t = torch.from_numpy(n)

NumPy 数组的变化反映在张量中。

np.add(n, 1, out=n)
print(f"t: {t}")
print(f"n: {n}")
t: tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
n: [2. 2. 2. 2. 2.]

以上就是python机器学习pytorch 张量基础教程的详细内容,更多关于python机器学习pytorch张量的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python机器学习pytorch 张量基础教程

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python学习入门基础教程(lear

在if分支判断语句里的条件判断语句不一定就是一个表达式,可以是多个(布尔)表达式的组合关系运算,这里如何使用更多的关系表达式构建出一个比较复杂的条件判断呢?这里需要再了解一下逻辑运算的基础知识。逻辑关系运算有以下几种运算符.     下面是
2023-01-31

Python学习入门基础教程(learn

在Python里可以自定义函数,实现某特定功能,这里首先要区分一下函数的定义和函数的调用两个基本概念,初学者往往容易混淆。      函数的定义是指将一堆能实现特定功能的语句用一个函数名标识起来,而函数的调用则是通过函数名来使用这一堆语句来
2023-01-31

Python常用算法学习基础教程

本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制。也就是说,能够对一定规范的输入,在有
2022-06-04

Python基础学习教程:Python基础之基本数据类型(一)

Python基础学习教程:Python基础之基本数据类型(一)
2023-06-02

Python学习教程:0基础学Python?手把手教你从变量和赋值语句学

这篇Python学习教程将手把手教你入门学Python,从变量和赋值语句学起,前面也有专门给大家出过相关的详细教程,有需要的伙伴,可以找一下前面的教程!导读:在本文中,你会学到如何处理数字、定义与使用变量和常量,以及编写使用这些数据类型执行
2023-06-02

Python机器学习之Kmeans基础算法

一、K-means基础算法简介 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对
2022-06-02

Python基础学习教程系列讲解——try_except异常处理机制

在Python编程中不可避免的会出现错误,在调试阶段出现语法之类的错误时,Pycharm会在Debug窗口提示错误,但是程序在运行时由于内部隐含的问题而引起错误,会导致程序终止执行。比如以下例程中,使用urllib库打开URL时由于网络问题
2023-06-02

Python机器学习实战教程

Python机器学习实战教程分享网盘地址——https://pan.baidu.com/s/1miIb4og 密码: wtiw课程真心不错,分享给大家机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计
2023-01-31

Python基础学习教程_Python学习路线_我是Python小白,怎么入门Python

Python基础学习教程_Python学习路线_我是Python小白,怎么入门Python人生苦短,我用Python!!!短短几个字,现在在各大编程学习类平台随处可见,短短几个字,足以见Python今日的地位!为什么Python总被提起,为
2023-06-02

Python中的条件判断语句基础学习教程

if语句用来检验一个条件, 如果 条件为真,我们运行一块语句(称为 if-块 ), 否则 我们处理另外一块语句(称为 else-块 )。 else 从句是可选的。 使用if语句:#!/usr/bin/python # Filename: i
2022-06-04

Python机器学习之基于Pytorch实现猫狗分类

目录一、环境配置二、数据集的准备三、猫狗分类的实例四、实现分类预测测试五、参考资料一、环境配置 安装Anaconda具体安装过程,请点击本文 配置Pytorchpip install -i https://pypi.tuna.tsinghu
2022-06-02

Python学习教程:Python数据分析实战基础 | 初识Pandas

这段时间和一些做数据分析的同学闲聊,我发现数据分析技能入门阶段存在一个普遍性的问题,很多凭着兴趣入坑的同学,都能够很快熟悉Python基础语法,好像自己什么都会了一点,然而实际操作起来既不知从何操起,又漏洞百出。至于原因嘛,理解不够,实践不
2023-06-02

Python机器学习的基础知识点有哪些

这篇文章主要介绍了Python机器学习的基础知识点有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、基础概述机器学习(Machine Learing)是一门多领域交叉学
2023-06-15

Python机器学习之如何基于Pytorch实现猫狗分类

这篇文章给大家分享的是有关Python机器学习之如何基于Pytorch实现猫狗分类的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。一、环境配置安装Anaconda具体安装过程,请点击本文配置Pytorchpip i
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录