我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python离散建模之感知器学习算法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python离散建模之感知器学习算法

我们将研究一种判别式分类方法,其中直接学习评估 g(x)所需的 w 参数。我们将使用感知器学习算法。
感知器学习算法很容易实现,但为了节省时间,我在下面为您提供了一个实现。该函数有几个输入:训练数据、训练标签、对权重的初始猜测和学习率。注意,对于这两个类,类标签的值必须为+1和-1。

它将返回一个元组,其中包含:

  • 1.学习w参数
  • 2.执行的迭代次数
  • 3.错误分类的样本数

花些时间检查代码。如果不清楚每一行是如何工作的,不要担心,只要让你自己知道每一行的目的是什么就可以了。代码中有一些注释可以帮助大家。

def perce(X, y, w_init, rho, max_iter=1000):
    
    (N, nfeatures) = X.shape

    # Augment the feature vectors by adding a 1 to each one. (see lecture notes)
    X = np.hstack((X, np.ones((N, 1))))
    nfeatures += 1

    w = w_init  # initialise weights
    iter = 0
    mis_class = N  # start by assuming all samples are misclassified

    while mis_class > 0 and iter < max_iter:
        iter += 1
        mis_class = 0
        gradient = np.zeros(nfeatures)  # initaliase the gradients to 0

        # loop over every training sample.
        for i in range(N):
            # each misclassified point will cause the gradient to change
            if np.inner(X[i, :], w) * y[i] <= 0:
                mis_class += 1
                gradient += -y[i] * X[i, :]
        # update the weight vector ready for the next iteration
        # Note, also that the learning rate decays over time (rho/iter)
        w -= rho / iter * gradient

    return w, iter, mis_class

解释:

X-数据矩阵。每行代表一个单独的样本
y-与X-标签行对应的整数类标签的一维数组必须为+1或-1
w_init-初始权重向量
rho-标量学习率
最大迭代次数-最大迭代次数(默认为1000)

def perce_fast(X, y, w_init, rho, max_iter=10000):
  
    (N, nfeatures) = X.shape
    X = np.hstack((X, np.ones((N, 1))))
    nfeatures += 1
    w = w_init
    iter = 0
    mis_class = N
    yy = np.tile(y, (nfeatures, 1)).T
    while mis_class > 0 and iter < max_iter:
        iter += 1
        # Compute set of misclassified points
        mc = (np.dot(X, w.transpose()) * y) <= 0
        mis_class = np.sum(mc)
        # Update weights. Note, the learning rate decays over time (rho/iter)
        w -= rho / iter * (np.sum(-yy[mc, :] * X[mc, :], axis=0))
    return w, iter, np.sum(mc)
  • 感知器算法的高效实现
  • 对于笔记本电脑数据,此版本的工作速度将提高x100!

到此这篇关于python离散建模之感知器学习算法的文章就介绍到这了,更多相关python感知器学习算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python离散建模之感知器学习算法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python如何实现感知器学习算法

这篇文章主要介绍python如何实现感知器学习算法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!我们将研究一种判别式分类方法,其中直接学习评估 g(x)所需的 w 参数。我们将使用感知器学习算法。感知器学习算法很容易
2023-06-29

Python机器学习之AdaBoost算法

目录一、算法概述二、算法原理三、算法步骤四、算法实现五、算法优化一、算法概述AdaBoost 是英文 Adaptive Boosting(自适应增强)的缩写,由 Yoav Freund 和Robert Schapire 在1995年提出。A
2022-06-02

Python机器学习之Kmeans基础算法

一、K-means基础算法简介 k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对
2022-06-02

Python机器学习之PCA降维算法详解

目录一、算法概述二、算法步骤三、相关概念四、算法优缺点五、算法实现六、算法优化一、算法概述主成分分析 (Principal ComponentAnalysis,PCA)是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因
2022-06-02

Python机器学习之AdaBoost算法的示例分析

这篇文章将为大家详细讲解有关Python机器学习之AdaBoost算法的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、算法概述AdaBoost 是英文 Adaptive Boosting(自适
2023-06-15

python opencv3机器学习之EM算法怎么使用

今天小编给大家分享一下python opencv3机器学习之EM算法怎么使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。引
2023-07-02

Python机器学习之PCA降维算法的示例分析

小编给大家分享一下Python机器学习之PCA降维算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、算法概述主成分分析 (Principal Com
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录