我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python如何实现感知器学习算法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python如何实现感知器学习算法

这篇文章主要介绍python如何实现感知器学习算法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

我们将研究一种判别式分类方法,其中直接学习评估 g(x)所需的 w 参数。我们将使用感知器学习算法。
感知器学习算法很容易实现,但为了节省时间,我在下面为您提供了一个实现。该函数有几个输入:训练数据、训练标签、对权重的初始猜测和学习率。注意,对于这两个类,类标签的值必须为+1和-1。

它将返回一个元组,其中包含:

  • 学习w参数

  • 执行的迭代次数

  • 错误分类的样本数

花些时间检查代码。如果不清楚每一行是如何工作的,不要担心,只要让你自己知道每一行的目的是什么就可以了。代码中有一些注释可以帮助大家。

def perce(X, y, w_init, rho, max_iter=1000):        (N, nfeatures) = X.shape    # Augment the feature vectors by adding a 1 to each one. (see lecture notes)    X = np.hstack((X, np.ones((N, 1))))    nfeatures += 1    w = w_init  # initialise weights    iter = 0    mis_class = N  # start by assuming all samples are misclassified    while mis_class > 0 and iter < max_iter:        iter += 1        mis_class = 0        gradient = np.zeros(nfeatures)  # initaliase the gradients to 0        # loop over every training sample.        for i in range(N):            # each misclassified point will cause the gradient to change            if np.inner(X[i, :], w) * y[i] <= 0:                mis_class += 1                gradient += -y[i] * X[i, :]        # update the weight vector ready for the next iteration        # Note, also that the learning rate decays over time (rho/iter)        w -= rho / iter * gradient    return w, iter, mis_class

解释:

X-数据矩阵。每行代表一个单独的样本
y-与X-标签行对应的整数类标签的一维数组必须为+1或-1
w_init-初始权重向量
rho-标量学习率
最大迭代次数-最大迭代次数(默认为1000)

def perce_fast(X, y, w_init, rho, max_iter=10000):      (N, nfeatures) = X.shape    X = np.hstack((X, np.ones((N, 1))))    nfeatures += 1    w = w_init    iter = 0    mis_class = N    yy = np.tile(y, (nfeatures, 1)).T    while mis_class > 0 and iter < max_iter:        iter += 1        # Compute set of misclassified points        mc = (np.dot(X, w.transpose()) * y) <= 0        mis_class = np.sum(mc)        # Update weights. Note, the learning rate decays over time (rho/iter)        w -= rho / iter * (np.sum(-yy[mc, :] * X[mc, :], axis=0))    return w, iter, np.sum(mc)

以上是“python如何实现感知器学习算法”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网行业资讯频道!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python如何实现感知器学习算法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python如何实现感知器学习算法

这篇文章主要介绍python如何实现感知器学习算法,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!我们将研究一种判别式分类方法,其中直接学习评估 g(x)所需的 w 参数。我们将使用感知器学习算法。感知器学习算法很容易
2023-06-29

JAVA实现感知器算法

简述随着互联网的高速发展,A(AI)B(BigData)C(Cloud)已经成为当下的核心发展方向,假如三者深度结合的话,AI是其中最核心的部分。所以如果说在未来社会,每个人都必须要学会编程的话,那么对于程序员来说,人工智能则是他们所必须
2023-05-30

Python中怎么实现一个感知器分类算法

Python中怎么实现一个感知器分类算法,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。感知器算法Perceptron算法是两类(二进制)分类机器学习算法。它是一种神经网络模
2023-06-15

Python机器学习k-近邻算法怎么实现

这篇文章主要介绍“Python机器学习k-近邻算法怎么实现”,在日常操作中,相信很多人在Python机器学习k-近邻算法怎么实现问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python机器学习k-近邻算法怎
2023-06-21

如何在PaddlePaddle框架中实现强化学习算法

在PaddlePaddle框架中实现强化学习算法通常可以通过以下步骤进行:安装PaddlePaddle框架:首先需要安装PaddlePaddle框架并确保环境配置正确。构建强化学习环境:根据具体的问题,可以自定义一个强化学习环境,例如一个游
如何在PaddlePaddle框架中实现强化学习算法
2024-03-08

学习和实现Python中的选择排序算法

理解Python中的选择排序原理与实现选择排序(Selection Sort)是一种简单直观的排序算法,其基本思想是每次遍历数组,在未排序部分中选择最小(或最大)的元素,将其与未排序部分的第一个元素交换位置,然后继续从未排序部分中选择最小
学习和实现Python中的选择排序算法
2024-02-03

学习Python中A*算法实现的详细步骤

以此加权图为例,用Python实现A*算法。加权图中的节点用粉红色圆圈表示,并且给出了沿节点的路径的权重。节点上方的数字代表节点的启发式值。首先为算法创建类。一个用于存储与起始节点的距离,另一个用于存储父节点。并将它们初始化为0,以及起始节
学习Python中A*算法实现的详细步骤
2024-01-23

Python机器学习之随机梯度下降法如何实现

本文小编为大家详细介绍“Python机器学习之随机梯度下降法如何实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python机器学习之随机梯度下降法如何实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。随机梯
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录