我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【动态规划】背包问题(详细总结,很全)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【动态规划】背包问题(详细总结,很全)

【动态规划】

一、 背包问题

1. 背包问题总结

暴力的解法是指数级别的时间复杂度。进而才需要动态规划的解法来进行优化!
背包问题是动态规划(Dynamic Planning) 里的非常重要的一部分,关于几种常见的背包,其关系如下:
在这里插入图片描述
在解决背包问题的时候,我们通常都是按照如下五部来逐步分析,把这五部都搞透了,算是对动规来理解深入了。

1)动规四部曲:

(1) 确定dp数组及其下标的含义
(2) 确定递推公式
(3) dp数组的初始化
(4) 确定遍历顺序

2) 递推公式总结:

1. 问能否能装满背包(或者最多装多少):

dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])

2. 问装满背包有几种方法:

dp[j] += dp[j - nums[i]]

3. 问背包装满最大价值:

dp[j] = max(dp[j], dp[j - weight[i]] + value[i])

4. 问装满背包所有物品的最小个数:

dp[j] = min(dp[j], dp[j - coins[i]] + 1)

3) 遍历顺序总结:

  • 二维dp数组01背包,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历
  • 一维dp数组01背包,只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。
  • 求组合数:外层遍历物品,内层遍历背包
    求排列数:外层遍历背包,内层遍历物品
    求最小数:两层for循环的先后顺序无所谓

2. 01背包

有n件物品和一个最多能背重量为w 的背包。第i件物品的重量是weight[i],得到的价值是value[i]
。每件物品只能用一次,求解将哪些物品装入背包里物品价值总和最大。

1) 二维dp数组

对于背包问题,有一种写法是使用二维数组。

  • 动规四部曲:
    1) 确定dp数组及其下标的含义

    • dp[i][j] 表示从下标为 [0 - i] 的物品里任意取,放进容量为j的背包,价值总和最大是多少。

    2) 确定递推公式

    • 不放物品i:由dp[i - 1][j]推出,即背包容量为j,里面不放物品i的最大价值,此时dp[i][j]就是dp[i - 1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)
    • 放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值
    • 所以递归公式:
  dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3)dp数组的初始化
* 首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0
* 状态转移方程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就一定要初始化。
* dp[0][j]:存放编号0的物品的时候,各个容量的背包所能存放的最大重量j。
那么很明显当 j < weight[0]时,dp[0][j] 应该是 0(背包容量比编号0的物品重量还小)
同理,当j >= weight[0]时,dp[0][j] 应该是value[0](背包容量足够放编号0物品)

4) 确定遍历顺序

  • 遍历顺序总结:
    * 二维dp数组01背包,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历
    * 一维dp数组01背包,只能先遍历物品再遍历背包容量,且第二层for循环是从大到小遍历。

代码实现

  • python(二维dp数组)
bag_size = 4weight = [1, 3, 4]value = [15, 20, 30]rows, cols = len(weight), bag_size + 1dp = [[0]*cols for _ in range(rows)]# 初始化dp数组.for i in range(rows):    dp[i][0] = 0first_item_weight, first_item_value = weight[0], value[0]for j in range(1, cols):    if first_item_weight <= j:        dp[0][j] = first_item_value# 更新dp数组: 先遍历物品, 再遍历背包.for i in range(1, rows):    for j in range(1, cols):        if weight[i] > j:  # 说明背包装不下当前物品.            dp[i][j] = dp[i - 1][j]  # 所以不装当前物品.        else:            # 定义dp数组: dp[i][j] 前i个物品里,放进容量为j的背包,价值总和最大是多少。            dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])print(dp)

2) 一维dp数组

在使用二维数组的时候,递推公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])
其实可以发现如果把dp[i - 1]那一层拷贝到dp[i]上,表达式完全可以是:dp[i][j] = max(dp[i][j], dp[i][j - weight[i]] + value[i]);
与其把dp[i - 1]这一层拷贝到dp[i]上,不如只用一个一维数组了,只用dp[j](一维数组,也可以理解是一个滚动数组)。

  • 动规四部曲
    • 确定dp数组及其下标的含义
      在一维dp数组中,dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。
    • 确定递推公式
      dp[j]可以通过dp[j - weight[i]]推导出来,dp[j - weight[i]]表示容量为j - weight[i]的背包所背的最大价值。
      dp[j - weight[i]] + value[i] 表示 容量为 j - 物品i 重量的背包 加上 物品i的价值。(也就是容量为j的背包,放入物品i了之后的价值即:dp[j])
      此时dp[j]有两个选择:1)取自己dp[j] 相当于 二维dp数组中的dp[i-1][j],即不放物品i;2)取dp[j - weight[i]] + value[i],即放物品i,指定是取最大的
      所以递推公式:
      dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
    • dp数组的初始化
      dp[j]表示:容量为j的背包,所背的物品价值可以最大为dp[j]。那么dp[0]就应该是0,因为背包容量为0所背的物品的最大价值就是0。其他的也初始化为0,这样在递归的时候,才会被覆盖成较大的值。
    • 确定遍历顺序
for(int i = 0; i < weight.size(); i++) { // 遍历物品    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);    }}
  • 从大大小遍历的原因:
    倒序遍历是为了保证物品i只被放入一次!但如果一旦正序遍历了,那么物品0就会被重复加入多次!

代码实现

  • python (一维dp数组)
weight = [1, 3, 4]value = [15, 20, 30]bag_weight = 4# 初始化: 全为0dp = [0] * (bag_weight + 1)# 先遍历物品, 再遍历背包容量for i in range(len(weight)):    for j in range(bag_weight, weight[i] - 1, -1):        # 递归公式        dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print(dp)

3. 完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。

我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:

  • 01背包
// 01背包  先遍历物品,再遍历背包for(int i = 0; i < weight.size(); i++) { // 遍历物品    for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量        dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);    }}
  • 完全背包
// 1. 先遍历物品,再遍历背包for(int i = 0; i < weight.size(); i++) { // 遍历物品    for(int j = weight[i]; j <= bagWeight ; j++) { // 遍历背包容量            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);    }}// 2. 先遍历背包,再遍历物品for(int j = 0; j <= bagWeight; j++) { // 遍历背包容量    for(int i = 0; i < weight.size(); i++) { // 遍历物品    // 容量 > 物品重量, 则更新dp数组        if (j >= weight[i])  dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);    }}
  • 遍历顺序总结:
    • 纯完全背包的一维dp数组实现,先遍历物品还是先遍历背包都是可以的,且第二层for循环是从小到大遍历。
    • 求组合数:外层for循环遍历物品,内层for遍历背包
    • 求排列数:外层for遍历背包,内层for循环遍历物品
    • 求最小数:两层for循环的先后顺序无所谓

代码实现

python

// 1.先遍历物品,再遍历背包def test_complete_pack1():    weight = [1, 3, 4]    value = [15, 20, 30]    bag_weight = 4    dp = [0]*(bag_weight + 1)    for i in range(len(weight)):        for j in range(weight[i], bag_weight + 1):            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])        print(dp[bag_weight])// 2. 先遍历背包,再遍历物品def test_complete_pack2():    weight = [1, 3, 4]    value = [15, 20, 30]    bag_weight = 4    dp = [0]*(bag_weight + 1)    for j in range(bag_weight + 1):        for i in range(len(weight)):            if j >= weight[i]: dp[j] = max(dp[j], dp[j - weight[i]] + value[i])        print(dp[bag_weight])if __name__ == '__main__':    test_complete_pack1()    test_complete_pack2()

4. 多重背包

多重背包和01背包是非常像的, 为什么和01背包像呢?
每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

  • 举个例子:
    背包最大重量为10,物品为:
    在这里插入图片描述
    请问背包能背的物品最大价值为多少?
    和如下情况有区别么?在这里插入图片描述
    几乎没有区别。每个物品只用一次,这就转成了一个01背包问题了。

代码实现

  • 两种解决方案如下:(python版本)
# 版本一: 将物品全摊开,转化为 01背包问题weight = [1, 3, 4]value = [15, 20, 30]nums = [2, 3, 2]bag_weight = 10# 将物品全部展开,数量全为1for i in range(len(nums)):    if nums[i] > 1:        weight.append(weight[i])        value.append(value[i])        nums[i] -= 1# 动态规划五部曲:dp = [0]*(bag_weight+1)# 遍历物品for i in range(len(weight)):    # 遍历背包    for j in range(bag_weight, weight[i] -1, -1):        dp[j] = max(dp[j], dp[j - weight[i]] + value[i])print("".join(map(str,dp)))# 版本二: 直接加上个数维度weight = [1, 3, 4]value = [15, 20, 30]nums = [2, 3, 2]bag_weight = 10dp = [0] * (len(bag_weight) + 1)for i in range(len(weight)): # 物品的重量    for j in range(bag_weight, weight[i] - 1, -1): # 背包的重量        # 以上是 01背包        for k in range(1, nums[i]+1):            if j >= k*weight[i]:                dp[j] = max(dp[j], dp[j - k*weight[i]] + k*value[i])print("".join(max(str, dp)))

知识星球的总结:
在这里插入图片描述

来源地址:https://blog.csdn.net/m0_51370744/article/details/127120649

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【动态规划】背包问题(详细总结,很全)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++动态规划中关于背包问题讲解

可能有些读者有接触过动态规划,可能也有一些读者以前完全不知道动态规划这个东西,别担心,我这篇文章会为读者做一个入门,好让读者掌握这个重要的知识点
2023-03-15

Python算法题解:动态规划解0-1背包问题

概述背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给
2023-06-02

C++动态规划中关于背包问题怎么解决

本篇内容主要讲解“C++动态规划中关于背包问题怎么解决”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++动态规划中关于背包问题怎么解决”吧!一、分割等和子集-最后一块石头的重量II背包问题,难
2023-07-05

C语言动态规划多种背包问题怎么解决

这篇文章主要介绍了C语言动态规划多种背包问题怎么解决的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言动态规划多种背包问题怎么解决文章都会有所收获,下面我们一起来看看吧。01背包问题C语言数学问题与简单DP0
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录