我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Java实现动态规划背包问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Java实现动态规划背包问题

前言

给定 n n n 种物品和一个背包。物品 i i i 的重量是 w i wi wi,其价值为 v i vi vi,背包的容量为 c c c。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?

一、原理

0 − 0 - 0− 1 1 1 背包问题是一个特殊的整数规划问题。

在这里插入图片描述

1.1 最优子结构性质

在这里插入图片描述在这里插入图片描述

1.2 递归关系

在这里插入图片描述

设所给 0 − 1 0-1 0−1 背包问题的子问题的最优值为 m(i,j),即 m(i,j)是背包容量为 j,可选择物品为 i,i+1,…,n 时 0-1背包问题的最优值。由 0-1背包问题的最优子结构性质,可以建立计算 m(i,j)的递归式如下:

在这里插入图片描述

在这里插入图片描述

二、算法描述

2.1 算法描述

在这里插入图片描述

伪代码:

在这里插入图片描述

2.2 图解

在这里插入图片描述

在这里插入图片描述

2.3 构造最优解

在这里插入图片描述
在这里插入图片描述


三、 0 − 1 0-1 0−1 背包问题相关题目

3.1 题目

已知有5个物体,它们的重量分别为:2,2,4,5,4,各物体的价值依次为6,3,5,4,6,背包大小为10,使用动态规划法求矩阵m[i][j],并给出最优解。修改数据为:5个物体,它们的重量分别为:1,1,2,3,2,各物体的价值依次为6,3,5,4,6,背包大小为6,使用动态规划法求矩阵m[i][j],并给出最优解

3.2 源程序(Java求解 0 − 1 0-1 0−1背包问题)



public class E3_9 {
    //物品的个数+1(第一个数我写成0)
    static int N = 6;
    //static int C = 7;
    static int C = 11;
    
    public static void main(String[] args) {
        //int n = N-1;
        //背包的容量
        int c = C-1;
        int i;
        //物体的重量
        //int w[] = new int[N];
        int w[] = new int[]{0,2,2,4,5,4};
        //int w[] = new int[]{0,1,1,2,3,2};
        //物体的价值
        //int v[] = new int[N];
        int v[] = new int[]{0,6,3,5,4,6};
        //动态规划法求解过程的矩阵
        int m[][] = new int[N][C];
        //选择的结果
        int x[] = new int [N];

        // for (i = 1; i < N; i++) {
        //     w[i] = 1+(int) (Math.random()*5);
        //     v[i] = 1+(int) (Math.random()*10);
        // }

        knapsack(v,w,c,m);
        traceback(m,w,c,x);

        System.out.printf("背包能装的最大价值为:"+"%d  \n ",m[1][c]);
        for (i = 1; i <= c; i++) {
            System.out.printf("%2d  \t",i);
        }
        System.out.printf("重量 价值\n");

        for (i = 1; i < N; i++) {
            System.out.printf("%d:",i);
            for (int j = 1; j <= c; j++) {
                System.out.printf("%2d  \t",m[i][j]);
            }
            System.out.printf("%2d%4d\n",w[i],v[i]);
        }
        System.out.printf("\n\n物品的重量");
        for (i = 1; i < N; i++) {
            System.out.printf("%2d   \t",w[i]);
        }
        System.out.printf("\n物品的价值");
        for (i = 1; i < N; i++) {
            System.out.printf("%2d   \t",v[i]);
        }
        System.out.printf("\n选择的结果");
        for (i = 1; i < N; i++) {
            System.out.printf("%2d   \t",x[i]);
        }
        System.out.printf("\n");
    }

    
    public static void knapsack(int []v,int []w,int c,int [][]m){
        int n=v.length-1;
        int jMax=Math.min(w[n]-1,c);
        for(int j=0;j<=jMax;j++)  m[n][j]=0;
        for(int j=w[n];j<=c;j++)  m[n][j]=v[n];
        for(int i=n-1;i>0;i--){
            jMax=Math.min(w[i]-1,c);
            for(int j=0;j<=jMax;j++)
                m[i][j]=m[i+1][j];
            for(int j=w[i];j<=c;j++)
                m[i][j]=Math.max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
        }
        //m[1][c]=m[2][c];
        //对于i=1时的两种情况
        if(c>=w[1])
            m[1][c]=Math.max(m[2][c],m[2][c-w[1]]+v[1]);
        else
            m[1][c]=m[2][c];
    }

    
    public static void traceback(int [][]m,int []w,int c,int []x){
        int n=w.length-1;
        for(int i=1;i<n;i++)
            if(m[i][c]==m[i+1][c])
                x[i]=0;
            else {
                x[i]=1;
                c-=w[i];
            }
        x[n]=(m[n][c]>0)?1:0;
    }
}

3.3 运行结果

在这里插入图片描述

在这里插入图片描述


总结

动态规划基本步骤

  • 找出最优解的性质,并刻划其结构特征。
  • 递归地定义最优值。
  • 以自底向上的方式计算出最优值。
  • 根据计算最优值时得到的信息,构造最优解。

到此这篇关于Java实现动态规划背包问题的文章就介绍到这了,更多相关java动态规划内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Java实现动态规划背包问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++动态规划中关于背包问题讲解

可能有些读者有接触过动态规划,可能也有一些读者以前完全不知道动态规划这个东西,别担心,我这篇文章会为读者做一个入门,好让读者掌握这个重要的知识点
2023-03-15

Python算法题解:动态规划解0-1背包问题

概述背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给
2023-06-02

C++动态规划中关于背包问题怎么解决

本篇内容主要讲解“C++动态规划中关于背包问题怎么解决”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C++动态规划中关于背包问题怎么解决”吧!一、分割等和子集-最后一块石头的重量II背包问题,难
2023-07-05

C语言动态规划多种背包问题怎么解决

这篇文章主要介绍了C语言动态规划多种背包问题怎么解决的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言动态规划多种背包问题怎么解决文章都会有所收获,下面我们一起来看看吧。01背包问题C语言数学问题与简单DP0
2023-06-30

Java动态规划之硬币找零问题实现代码

动态规划的基本思想是将待求解问题分解成若干个子问题,先求解子问题,并将这些子问题的解保存起来,如果以后在求解较大子问题的时候需要用到这些子问题的解,就可以直接取出这些已经计算过的解而免去重复运算。保存子问题的解可以使用填表方式,例如保存在数
2023-05-30

Java动态规划之硬币找零问题实现示例

本文主要介绍了Java动态规划之硬币找零问题实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-11-13

Java动态规划之如何编辑距离问题

这篇文章给大家分享的是有关Java动态规划之如何编辑距离问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所
2023-05-30

动态规划之矩阵连乘问题Python实现方法

本文实例讲述了动态规划之矩阵连乘问题Python实现方法。分享给大家供大家参考,具体如下: 给定n个矩阵{A1,A2,…,An},其中Ai与Ai+1是可乘的,i=1,2 ,…,n-1。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连
2022-06-04

Java矩阵连乘问题(动态规划)算法实例分析

本文实例讲述了Java矩阵连乘问题(动态规划)算法。分享给大家供大家参考,具体如下:问题描述:给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连
2023-05-30

如何实现动态规划进阶

本篇内容介绍了“如何实现动态规划进阶”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!案例 1问:给定一个包含非负整数的 m x n 网格,请找
2023-06-15

C++实现动态规划过程详解

动态规划是解决一类最优问题的常用方法,它是解决最优化问题的一种途径,在本文中,我们将讨论如何使用C++实现动态规划算法,并提供一些示例来帮助您更好地理解该算法
2023-05-20

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录