我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据分析之堆叠数组函数示例总结

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据分析之堆叠数组函数示例总结

numpy 堆叠数组

在做图像和 nlp 的数组数据处理的时候,经常需要实现两个数组堆叠或者连接的功能,这就需用到 numpy 库的一些函数,numpy 库中的常用堆叠数组函数如下:

  • stack : Join a sequence of arrays along a new axis.
  • hstack: Stack arrays in sequence horizontally (column wise).
  • vstack : Stack arrays in sequence vertically (row wise).
  • dstack : Stack arrays in sequence depth wise (along third axis).
  • concatenate : Join a sequence of arrays along an existing axis.

ravel() 函数

ravel() 方法可让将多维数组展平成一维数组。如果不指定任何参数,ravel() 将沿着行(第 0 维/轴)展平/拉平输入数组。

示例代码如下:

std_array = np.random.normal(3, 2.5, size=(2, 4))
array1d = std_array.ravel()
print(std_array)
print(array1d)

程序输出结果如下:

[[5.68301857 2.09696067 2.20833423 2.83964393]
 [2.38957339 9.66254303 1.58419716 2.82531094]]
 
[5.68301857 2.09696067 2.20833423 2.83964393 2.38957339 9.66254303 1.58419716 2.82531094]

stack() 函数

stack() 函数原型是 stack(arrays, axis=0, out=None),功能是沿着给定轴连接数组序列,轴默认为第0维。

1,参数解析:

  • arrays: 类似数组(数组、列表)的序列,这里的每个数组必须有相同的shape。
  • axis: 默认为整形数据,axis决定了沿着哪个维度stack输入数组。

2,返回:

  • stacked : ndarray 类型。The stacked array has one more dimension than the input arrays.

实例如下:

import numpy as np
# 一维数组进行stack
a1 = np.array([1, 3, 4])    # shape (3,)
b1 = np.array([4, 6, 7])    # shape (3,)
c1 = np.stack((a,b))
print(c1)
print(c1.shape)    # (2,3)
# 二维数组进行堆叠
a2 = np.array([[1, 3, 5], [5, 6, 9]])    # shape (2,3)
b2 = np.array([[1, 3, 5], [5, 6, 9]])    # shape (2,3)
c2 = np.stack((a2, b2), axis=0)
print(c2)
print(c2.shape)

输出为:

[[1 3 4] [4 6 7]]

(2, 3)

[[[1 3 5] [5 6 9]] [[1 3 5] [5 6 9]]] (2, 2, 3)

可以看到,进行 stack 的两个数组必须有相同的形状,同时,输出的结果的维度是比输入的数组都要多一维的。我们拿第一个例子来举例,两个含 3 个数的一维数组在第 0 维进行堆叠,其过程等价于先给两个数组增加一个第0维,变为1*3的数组,再在第 0 维进行 concatenate() 操作:

a = np.array([1, 3, 4])
b = np.array([4, 6, 7])
a = a[np.newaxis,:]
b = b[np.newaxis,:]
np.concatenate([a,b],axis=0)

输出为:

array([[1, 2, 3],       [2, 3, 4]])

vstack()函数

vstack函数原型是vstack(tup),功能是垂直的(按照行顺序)堆叠序列中的数组。tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。1-D arrays must have the same length.

# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.vstack((a,b))

array([[1, 2, 3], [2, 3, 4]])

# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.vstack((a,b))

array([[1], [2], [3], [2], [3], [4]])

hstack()函数

hstack()的函数原型:hstack(tup) ,参数tup可以是元组,列表,或者numpy数组,返回结果为numpy的数组。它其实就是**水平(按列顺序)**把数组给堆叠起来,与vstack()函数正好相反。举几个简单的例子:

# 一维数组
a = np.array([1, 2, 3])
b = np.array([2, 3, 4])
np.hstack((a,b))

array([1, 2, 3, 2, 3, 4])

# 二维数组
a = np.array([[1], [2], [3]])
b = np.array([[2], [3], [4]])
np.hstack((a,b))

array([[1, 2], [2, 3], [3, 4]])

vstack()和hstack函数对比:

这里的v是vertically的缩写,代表垂直(沿着行)堆叠数组,这里的h是horizontally的缩写,代表水平(沿着列)堆叠数组。 tup是数组序列(元组、列表、数组),数组必须在所有轴上具有相同的shape,除了第一个轴。

concatenate() 函数

concatenate()函数功能齐全,理论上可以实现上面三个函数的功能,concatenate()函数根据指定的维度,对一个元组、列表中的list或者ndarray进行连接,函数原型:

numpy.concatenate((a1, a2, ...), axis=0)
a = np.array([[1, 2], [3,4]])               
b = np.array([[5, 6], [7, 8]])
# a、b的shape为(2,2),连接第一维就变成(4,2),连接第二维就变成(2,4)
np.concatenate((a, b), axis=0)

array([[1, 2], [3, 4], [5, 6], [7, 8]])

注意:axis指定的维度(即拼接的维度)可以是不同的,但是axis之外的维度(其他维度)的长度必须是相同的。注意 concatenate 函数使用最广,必须在项目中熟练掌握。

参考资料 numpy中的hstack()、vstack()、stack()、concatenate()函数详解

以上就是Python数据分析之堆叠数组函数示例总结的详细内容,更多关于Python堆叠数组函数的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据分析之堆叠数组函数示例总结

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据分析之堆叠数组函数示例总结

这篇文章主要为大家介绍了Python数据分析之堆叠数组函数示例总结,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-23

Python数据分析之堆叠数组函数怎么使用

今天小编给大家分享一下Python数据分析之堆叠数组函数怎么使用的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。numpy 堆
2023-07-05

python数据结构堆的示例分析

小编给大家分享一下python数据结构堆的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!1、说明堆是用数据结构来实现的一种算法:树,数组均可。堆本身是一棵完全二叉树。2、特点最大堆:所有父节点的值大于子节点的值最小
2023-06-15

C语言数据结构堆排序示例分析

今天小编给大家分享一下C语言数据结构堆排序示例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。TOP.堆排序前言什么是堆排
2023-06-30

java数据结构之树的示例分析

这篇文章主要介绍java数据结构之树的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!树定义和基本术语定义树(Tree)是n(n≥0)个结点的有限集T,并且当n>0时满足下列条件:(1)有且仅有一个特定的称为根
2023-05-30

Python 数据结构之堆栈实例代码

Python 堆栈 堆栈是一个后进先出(LIFO)的数据结构. 堆栈这个数据结构可以用于处理大部分具有后进先出的特性的程序流 . 在堆栈中, push 和 pop 是常用术语:push: 意思是把一个对象入栈.pop: 意思是把一个对象出
2022-06-04

Python Pandas数据结构的示例分析

这篇文章将为大家详细讲解有关Python Pandas数据结构的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1 Pandas介绍2008年WesMcKinney开发出的库专门用于数据挖掘的开源p
2023-06-29

Python数据结构之旋转链表的示例分析

这篇文章主要为大家展示了“Python数据结构之旋转链表的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python数据结构之旋转链表的示例分析”这篇文章吧。示例图题目描述:给定一个链表
2023-06-17

Java数组实现堆排序的示例分析

这篇文章主要为大家展示了“Java数组实现堆排序的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Java数组实现堆排序的示例分析”这篇文章吧。数组全部入堆,再出堆从后向前插入回数组中,数
2023-05-30

Java数据结构之链表的示例分析

小编给大家分享一下Java数据结构之链表的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、链表的介绍什么是链表链表是一种物理存储单元上非连续、非顺序的存
2023-06-15

python数据结构算法的示例分析

小编给大家分享一下python数据结构算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1.算法分析的定义有这样一个问题:当两个看上去不同的程序 解决同
2023-06-22

Python数据结构创建的示例分析

本篇文章为大家展示了Python数据结构创建的示例分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。1. 列表list:变量赋值方式:shoplist = [apple, mango, carrot
2023-06-17

Python函数加速数据分析处理速度的示例分析

Python函数加速数据分析处理速度的示例分析,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。前言:Pandas 是 Python 中最广泛使用的数据分析和操作库
2023-06-22

C标准库堆内存函数的示例分析

这篇文章主要为大家展示了“C标准库堆内存函数的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“C标准库堆内存函数的示例分析”这篇文章吧。概述C标准库堆内存函数有4个:malloc、free
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录