我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python数据分析之Matplotlib的常用操作总结

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python数据分析之Matplotlib的常用操作总结

使用准备

使用matplotlib需引入:

import matplotlib.pyplot as plt

通常2会配合着numpy使用,numpy引入:

import numpy as np

1、简单的绘制图像

def matplotlib_draw():
    # 从-1到1生成100个点,包括最后一个点,默认为不包括最后一个点
    x = np.linspace(-1, 1, 100, endpoint=True)
 
    y = 2 * x + 1
    plt.plot(x, y)  # plot将信息传入图中
    plt.show()  # 展示图片

2、视图面板的常用操作

def matplotlib_figure():
    x = np.linspace(-1, 1, 100)
    y1 = 2 * x + 1
    y2 = x ** 2  # 平方
 
    plt.figure()  # figure是视图面板
    plt.plot(x, y1)
 
    # 这里再创建一个视图面板,最后会生成两张图,figure只绘制范围以下的部分
    plt.figure(figsize=(4, 4))  # 设置视图长宽
    plt.plot(x, y2)
 
    plt.show()

3、样式及各类常用修饰属性

def matplotlib_style():
    x = np.linspace(-3, 3, 100)
    y1 = 2 * x + 1
    y2 = x ** 2  # 平方
 
    # 限制xy输出图像的范围
    plt.xlim((-1, 2))  # 限制x的范围
    plt.ylim((-2, 3))  # 限制y的范围
 
    # xy描述
    plt.xlabel('I am X')
    plt.ylabel('I am Y')
 
    # 设置xy刻度值
    # 从-2到2上取11个点,最后生成一个一维数组
    new_sticks = np.linspace(-2, 2, 11)
    plt.xticks(new_sticks)
    # 使用文字代替数字刻度
    plt.yticks([-1, 0, 1, 2, 3], ['level1', 'level2', 'level3', 'level4', 'level5'])
 
    # 获取坐标轴 gca get current axis
    ax = plt.gca()
    ax.spines['right'].set_color('red')  # 设置右边框为红色
    ax.spines['top'].set_color('none')  # 设置顶部边框为没有颜色,即无边框
 
    # 把x轴的刻度设置为'bottom'
    ax.xaxis.set_ticks_position('bottom')
    # 把y轴的刻度设置为'left'
    ax.yaxis.set_ticks_position('left')
    # 设置xy轴的位置,以下测试xy轴相交于(1,0)
    # bottom对应到0点
    ax.spines['bottom'].set_position(('data', 0))
    # left对应到1点
    ax.spines['left'].set_position(('data', 1))  # y轴会与1刻度对齐
 
    # 颜色、线宽、实线:'-',虚线:'--',alpha表示透明度
    plt.plot(x, y1, color="red", linewidth=1.0, linestyle='--', alpha=0.5)
    plt.plot(x, y2, color="blue", linewidth=5.0, linestyle='-')
    plt.show()  # 这里没有设置figure那么两个线图就会放到一个视图里

4、legend图例的使用

def matplotlib_legend():
    x = np.linspace(-3, 3, 100)
    y1 = 2 * x + 1
    y2 = x ** 2  # 平方
 
    l1, = plt.plot(x, y1, color="red", linewidth=1.0, linestyle='--', alpha=0.5)
    l2, = plt.plot(x, y2, color="blue", linewidth=5.0, linestyle='-')
    # handles里面传入要产生图例的关系线,labels中传入对应的名称,
    # loc='best'表示自动选择最好的位置放置图例
    plt.legend(handles=[l1, l2], labels=['test1', 'test2'], loc='best')
    plt.show()

5、添加文字等描述

def matplotlib_describe():
    x = np.linspace(-3, 3, 100)
    y = 2 * x + 1
    plt.plot(x, y, color="red", linewidth=1.0, linestyle='-')
 
    # 画点,s表示点的大小
    x0 = 0.5
    y0 = 2 * x0 + 1
    plt.scatter(x0, y0, s=50, color='b')
 
    # 画虚线,
    # k代表黑色,--代表虚线,lw线宽
    # 表示重(x0,y0)到(x0,-4)画线
    plt.plot([x0, x0], [y0, -4], 'k--', lw=2)
    # 标注,xytext:位置,textcoords设置起始位置,arrowprops设置箭头,connectionstyle设置弧度
    plt.annotate(r'$2x+1=%s$' % y0, xy=(x0, y0), xytext=(+30, -30), 
                 textcoords="offset points", fontsize=16,
                 arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=.2'))
 
    # 文字描述
    plt.text(-3, 3, r'$this\ is\ the\ text$', fontdict={'size': '16', 'color': 'r'})
 
    plt.show()

6、不同类型图像的绘制

(1)scatter绘制散点图:

def matplotlib_scatter():
    plt.figure()
    plt.scatter(np.arange(5), np.arange(5))  # 安排两个0到4的数组绘制
 
    x = np.random.normal(0, 1, 500)  # 正态分布的500个数
    y = np.random.normal(0, 1, 500)
 
    plt.figure()
    plt.scatter(x, y, s=50, c='b', alpha=0.5)
 
    plt.show()

(2)bar绘制直方图:

def matplotlib_bar():
    x = np.arange(10)
    y = 2 ** x + 10
    # facecolor块的颜色,edgecolor块边框的颜色
    plt.bar(x, y, facecolor='#9999ff', edgecolor='white')
    # 设置数值位置
    for x, y in zip(x, y):  # zip将x和y结合在一起
        plt.text(x + 0.4, y, "%.2f" % y, ha='center', va='bottom')
 
    plt.show()

(3)contour轮廓图:

def matplotlib_contours():
    def f(a, b):
        return (1 - a / 2 + a ** 5 + b ** 3) * np.exp(-a ** 2 - b ** 2)
 
    x = np.linspace(-3, 3, 100)
    y = np.linspace(-3, 3, 100)
 
    X, Y = np.meshgrid(x, y)  # 将x和y传入一个网格中
    # 8表示条形线的数量,数量越多越密集
    plt.contourf(X, Y, f(X, Y), 8, alpha=0.75, cmap=plt.cm.hot)  # cmap代表图的颜色
 
    C = plt.contour(X, Y, f(X, Y), 8, color='black', linewidth=.5)
    plt.clabel(C, inline=True, fontsize=10)
 
    plt.xticks(())
    plt.yticks(())
    plt.show()

(4)3D图:

3D图绘制需额外再引入依赖:

from mpl_toolkits.mplot3d import Axes3D
def matplotlib_Axes3D():
    fig = plt.figure()  # 创建绘图面版环境
    ax = Axes3D(fig)  # 将环境配置进去
 
    x = np.arange(-4, 4, 0.25)
    y = np.arange(-4, 4, 0.25)
    X, Y = np.meshgrid(x, y)  
    R = np.sqrt(X ** 2 + Y ** 2)
    Z = np.sin(R)
 
    # stride控制色块大小
    ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'))
    ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap='rainbow')
    ax.set_zlim(-2, 2)
 
    plt.show()

 

(5)subplot子图绘制:

def matplotlib_subplot():
    plt.figure()  # 生成绘图面板
    plt.subplot(2, 1, 1)  # 两行1列绘图位置的第1个位置
    plt.plot([0, 1], [0, 1])  # 绘制从(0,0)绘制到(1,1)的图像
    plt.subplot(2, 3, 4)  # 两行3列绘图位置的第4个位置
    plt.plot([0, 1], [0, 1])  # 绘制从(0,0)绘制到(1,1)的图像
    plt.subplot(2, 3, 5)  # 两行3列绘图位置的第5个位置
    plt.plot([0, 1], [0, 1])  # 绘制从(0,0)绘制到(1,1)的图像
    plt.subplot(2, 3, 6)  # 两行3列绘图位置的第6个位置
    plt.plot([0, 1], [0, 1])  # 绘制从(0,0)绘制到(1,1)的图像
 
    plt.show()

(6)animation动图绘制

需额外导入依赖:

from matplotlib import animation
# ipython里运行可以看到动态效果
def matplotlib_animation():
    fig, ax = plt.subplots()
 
    x = np.arange(0, 2 * np.pi, 0.01)
    line, = ax.plot(x, np.sin(x))
 
    def animate(i):
        line.set_ydata(np.sin(x + i / 10))
        return line,
 
    def init():
        line.set_ydata(np.sin(x))
        return line,
 
    ani = animation.FuncAnimation(fig=fig, func=animate, init_func=init, interval=20)
 
    plt.show()

附:直方图代码实现

import numpy as np
import matplotlib.pyplot as plt

np.random.seed(1)
# 产生30个学生身高数据
hight = np.random.randint(low=140, high=190, size=30)
print("身高数据", hight)

# 绘制直方图 plt.hist

# 参数1:要统计的数据; 参数2:区间信息

# 区间信息有默认值 bins =10  分10组
# bins = [140, 145, 160, 170, 190]
# 除了最后一个 都是前闭后开;最后一组是前闭后闭
# [140,145) [145,160) [160,170) [170,190]

bins = [140, 180, 190]

cnt, bins_info, _ = plt.hist(hight,
                             bins=10,
                             # bins=bins,
                             edgecolor='w'  # 柱子的边缘颜色 白色
                             )
# 直方图的返回值有3部分内容
# 1. 每个区间的数据量
# 2. 区间信息
# 3. 区间内数据数据信息 是个对象 不能直接查看
# print("直方图的返回值", out)

# cnt, bins_info, _ = out


# 修改x轴刻度
plt.xticks(bins_info)

# 增加网格线
# 参数1:b bool类型 是否增加网格线
# 参数 axis 网格线 垂直于 哪个轴
plt.grid(b=True,
         axis='y',
         # axis='both'
         alpha=0.3
         )

# 增加标注信息 plt.text
print("区间信息", bins_info)
print("区间数据量", cnt)

bins_info_v2 = (bins_info[:-1] + bins_info[1:]) / 2
for i, j in zip(bins_info_v2, cnt):
    # print(i, j)
    plt.text(i, j + 0.4, j,
             horizontalalignment='center',  # 水平居中
             verticalalignment='center',  # 垂直居中
             )

# 调整y轴刻度
plt.yticks(np.arange(0, 20, 2))

plt.show()

更多见官方文档:教程 | Matplotlib 中文

总结

到此这篇关于Python数据分析之Matplotlib常用操作的文章就介绍到这了,更多相关Python Matplotlib常用操作内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python数据分析之Matplotlib的常用操作总结

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python常用字符串操作的总结

本篇内容主要讲解“python常用字符串操作的总结”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“python常用字符串操作的总结”吧!1、字符串使用乘法运算符*做乘法运算的含义是复制。>>> p
2023-06-20

Python数据分析之pandas比较操作

目录一、比较运算符和比较方法二、两个DataFrame比较三、两个Series比较四、与数字或字符串比较五、与array进行比较一、比较运算符和比较方法 比较运算符用于判断是否相等和比较大小,Python中的比较运算符有==、!=、<、>、
2022-06-02

java基础之数组常用操作总结(必看篇)

常用的对数组进行的操作1、求数组中最大值,最小值思路:假设下标为0的元素是最大值,遍历数组,依次跟max进行比较,如果有元素比这个max还大,则把这个值赋给max。最小值同样public class TestArray{ public s
2023-05-31

PHP常用的文件操作函数总结

这篇文章主要给大家总结了一些PHP中文件操作的常见函数,文中通过实例代码介绍的非常详细,对我们学习PHP有一定帮助,需要的朋友可以参考下
2022-11-13

Python数据分析之堆叠数组函数示例总结

这篇文章主要为大家介绍了Python数据分析之堆叠数组函数示例总结,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-23

Python数组中实际应用的数据结构的操作分析

这期内容当中小编将会给大家带来有关Python数组中实际应用的数据结构的操作分析,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。本文并不详细介绍Python列表,可以参看Python文档。Python数组中
2023-06-17

Python数据分析之怎么用Matplotlib绘制饼图

这篇文章主要介绍“Python数据分析之怎么用Matplotlib绘制饼图”,在日常操作中,相信很多人在Python数据分析之怎么用Matplotlib绘制饼图问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”P
2023-06-30

mysql数据表的基本操作之表结构操作,字段操作实例分析

本文实例讲述了mysql数据表的基本操作之表结构操作,字段操作。分享给大家供大家参考,具体如下: 本节介绍: 表结构操作创建数据表、查看数据表和查看字段、修改数据表结构删除数据表字段操作新增字段、修改字段数据类型、位置或属性、重命名字段删除
2022-05-11

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录