我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python 数据化运营之KMeans聚类分析总结

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python 数据化运营之KMeans聚类分析总结

Python 数据化运营

1、内容介绍

Python 使用 Keans 进行聚类分析的简单举例应用介绍聚类分析。

聚类分析聚类 是对一组对象进行分组的任务,使得同一组(称为聚类)中的对象(在某种意义上)与其他组(聚类)中的对象更相似(在某种意义上)。它是探索性数据挖掘的主要任务,也是统计数据分析的常用技术,用于许多领域,包括机器学习,模式识别,图像分析,信息检索,生物信息学,数据压缩和计算机图形学。

2、一般应用场景

(1)目标用户的群体分类:根据运营或商业目的挑选出来的变量,对目标群体进行聚类,将目标群体分成几个有明显的特征区别的细分群体,在运营活动中为这些细分群体采用精细化、个性化的运营和服务,提升运营的效率和商业效果。

(2)不同产品的价值组合:按特定的指标变量对众多产品种类进行聚类。将产品体系细分成具有不同价值、不同目的、多维度产品组合,在此基础上制定相应的产品开发计划、运营计划和服务计划。

(3)探索、发现孤立点及异常值:主要是风控应用。孤立点可能会存在欺诈的风险成分。

3、聚类的常见方法

分为基于划分、层次、密度、网格、统计学、模型等类型的算法,典型算法包括K均值(经典的聚类算法)、DBSCAN、两步聚类、BIRCH、谱聚类等。

4、Keans聚类实现


import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import metrics
import random

# 随机生成100组包含3组特征的数据
feature = [[random.random(),random.random(),random.random()] for i in range(100)]
label = [int(random.randint(0,2)) for i in range(100)]

# 转换数据格式
x_feature = np.array(feature)

# 训练聚类模型
n_clusters = 3  # 设置聚类数量
model_kmeans = KMeans(n_clusters=n_clusters, random_state=0)  # 建立聚类模型对象
model_kmeans.fit(x_feature)  # 训练聚类模型
y_pre = model_kmeans.predict(x_feature)  # 预测聚类模型
y_pre

实现如图:

5、聚类的评估指标

inertias 是K均值模型对象的属性,表示样本距离最近的聚类中心的总和,它是作为在没有真实分类结果标签下的非监督式评估指标。该值越小越好,值越小证明样本在类间的分布越集中,即类内的距离越小。


# 样本距离最近的聚类中心的总和
inertias = model_kmeans.inertia_  

adjusted_rand_s:调整后的兰德指数(Adjusted Rand Index),兰德指数通过考虑在预测和真实聚类中在相同或不同聚类中分配的所有样本对和计数对来计算两个聚类之间的相似性度量。调整后的兰德指数通过对兰德指数的调整得到独立于样本量和类别的接近于0的值,其取值范围为[-1, 1],负数代表结果不好,越接近于1越好意味着聚类结果与真实情况越吻合。


# 调整后的兰德指数
adjusted_rand_s = metrics.adjusted_rand_score(label, y_pre)  

mutual_info_s:互信息(Mutual Information, MI),互信息是一个随机变量中包含的关于另一个随机变量的信息量,在这里指的是相同数据的两个标签之间的相似度的量度,结果是非负值。


# 互信息
mutual_info_s = metrics.mutual_info_score(label, y_pre) 

adjusted_mutual_info_s:调整后的互信息(Adjusted Mutual Information, AMI),调整后的互信息是对互信息评分的调整得分。它考虑到对于具有更大数量的聚类群,通常MI较高,而不管实际上是否有更多的信息共享,它通过调整聚类群的概率来纠正这种影响。当两个聚类集相同(即完全匹配)时,AMI返回值为1;随机分区(独立标签)平均预期AMI约为0,也可能为负数。


# 调整后的互信息
adjusted_mutual_info_s = metrics.adjusted_mutual_info_score(label, y_pre)  

homogeneity_s:同质化得分(Homogeneity),如果所有的聚类都只包含属于单个类的成员的数据点,则聚类结果将满足同质性。其取值范围[0,1]值越大意味着聚类结果与真实情况越吻合。


# 同质化得分
homogeneity_s = metrics.homogeneity_score(label, y_pre)  

completeness_s:完整性得分(Completeness),如果作为给定类的成员的所有数据点是相同集群的元素,则聚类结果满足


完整性。其取值范围[0,1],值越大意味着聚类结果与真实情况越吻合。

# 完整性得分
completeness_s = metrics.completeness_score(label, y_pre)  

v_measure_s:它是同质化和完整性之间的谐波平均值,v = 2 (均匀性 完整性)/(均匀性+完整性)。其取值范围[0,1],值越大意味着聚类结果与真实情况越吻合。


v_measure_s = metrics.v_measure_score(label, y_pre)  

silhouette_s:轮廓系数(Silhouette),它用来计算所有样本的平均轮廓系数,使用平均群内距离和每个样本的平均最近簇距离来计算,它是一种非监督式评估指标。其最高值为1,最差值为-1,0附近的值表示重叠的聚类,负值通常表示样本已被分配到错误的集群。


# 平均轮廓系数
silhouette_s = metrics.silhouette_score(x_feature, y_pre, metric='euclidean')  

calinski_harabaz_s:该分数定义为群内离散与簇间离散的比值,它是一种非监督式评估指标。


# Calinski和Harabaz得分
calinski_harabaz_s = metrics.calinski_harabasz_score(x_feature, y_pre)  

6、聚类效果可视化


# 模型效果可视化
centers = model_kmeans.cluster_centers_  # 各类别中心
colors = ['#4EACC5', '#FF9C34', '#4E9A06']  # 设置不同类别的颜色
plt.figure()  # 建立画布
for i in range(n_clusters):  # 循环读类别
    index_sets = np.where(y_pre == i)  # 找到相同类的索引集合
    cluster = x_feature[index_sets]  # 将相同类的数据划分为一个聚类子集
    plt.scatter(cluster[:, 0], cluster[:, 1], c=colors[i], marker='.')  # 展示聚类子集内的样本点
    plt.plot(centers[i][0], centers[i][1], 'o', markerfacecolor=colors[i], markeredgecolor='k',
             markersize=6)  # 展示各聚类子集的中心
plt.show()  # 展示图像

如图:

7、数据预测


# 模型应用
new_X = [1, 3.6,9.9]
cluster_label = model_kmeans.predict(np.array(new_X).reshape(1,-1))
print ('聚类预测结果为: %d' % cluster_label)

 到此这篇关于Python 数据化运营之KMeans聚类分析总结的文章就介绍到这了,更多相关Python 数据化运营内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python 数据化运营之KMeans聚类分析总结

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python+ChatGPT实战之进行游戏运营数据分析

最近ChatGPT蛮火的,今天试着让ta用Python语言写了一篇数据分析实战案例。文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-02-23

Python数据分析之堆叠数组函数示例总结

这篇文章主要为大家介绍了Python数据分析之堆叠数组函数示例总结,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-02-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录