我的编程空间,编程开发者的网络收藏夹
学习永远不晚

基于 Agent的Python是怎么实现隔离仿真

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

基于 Agent的Python是怎么实现隔离仿真

这篇文章给大家介绍基于 Agent的Python是怎么实现隔离仿真,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。

我会向你介绍用基于 Agent 的模型理解复杂现象的威力。为此,我们会用到一些 Python,社会学的案例分析和 Schelling 模型。

1. 案例分析

如果你观察多民族(multi-ethnic)混居城市的种族(racial)分布,你会对不可思议的种族隔离感到惊讶。举个例子,下面是美国人口普查局(US Census)用种族和颜色对应标记的纽约市地图。种族隔离清晰可见。

许多人会从这个现象中认定人是偏隘的(intolerant),不愿与其它种族比邻而居。然而进一步看,会发现细微的差别。2005 年的诺贝尔经济学奖得主托马斯·谢林(Thomas Schelling)在上世纪七十年代,就对这方面非常感兴趣,并建立了一个基于 Agent 的模型——“Schelling 隔离模型”的来解释这种现象。借助这个极其简单的模型,Schelling 会告诉我们,宏观所见并非微观所为(What’s going down)。

我们会借助 Schelling 模型模拟一些仿真来深刻理解隔离现象。

2. Schelling 隔离模型:设置和定义

基于 Agent 的模型需要三个参数:1)Agents,2)行为(规则)和 3)总体层面(aggregate level)的评估。在 Schelling 模型中,Agents 是市民,行为则是基于相似比(similarity ratio )的搬迁,而总体评估评估就是相似比。

假设城市有 n 个种族。我们用唯一的颜色来标识他们,并用网格来代表城市,每个单元格则是一间房。要么是空房子,要么有居民,且数量为 1。如果房子是空的,我们用白色标识。如果有居民,我们用此人的种群颜色来标识。我们把每个人周边房屋(上下左右、左上右上、左下右下)定义为邻居。

Schelling 的目的是想测试当居民更倾向于选择同种族的邻居(甚至多种族)时会如果发生什么。如果同种族邻居的比例上升到确定阈值(称之为相似性阈值(Similarity Threshold)),那么我们认为这个人已经满意(satisfied)了。如果还没有,就是不满意。

Schelling 的仿真如下。首先我们将人随机分配到城里并留空一些房子。对于每个居民,我们都会检查他(她)是否满意。如果满意,我们什么也不做。但如果不满意,我们把他分配到空房子。仿真经过几次迭代后,我们会观察最终的种族分布。

3. Schelling 模型的 Python 实现

早在上世纪 70 年代,Schelling 就用铅笔和硬币在纸上完成了他的仿真。我们现在则用 Python 来完成相同的仿真。

为了模拟仿真,我们首先导入一些必要的库。除了 Matplotlib 以外,其它库都是 Python 默认安装的。

Python

import matplotlib.pyplot as plt

import itertools

import random

import copy

 

接下来,定义名为 Schelling 的类,涉及到 6 个参数:城市的宽和高,空房子的比例,相似性阈值,迭代数和种族数。我们在这个类中定义了 4 个方法:populate,is_unsatisfied,update,move_to_empty, 还有 plot)。

Python

class Schelling:

    def __init__(self, width, height, empty_ratio, similarity_threshold, n_iterations, races = 2):

        self.width = width

        self.height = height

        self.races = races

        self.empty_ratio = empty_ratio

        self.similarity_threshold = similarity_threshold

        self.n_iterations = n_iterations

        self.empty_houses = []

        self.agents = {}

 

    def populate(self):

        ....

 

    def is_unsatisfied(self, x, y):

        ....

 

    def update(self):        

        ....

 

    def move_to_empty(self, x, y):

        ....

 

    def plot(self):

        ....

 

poplate 方法被用在仿真的开头,这个方法将居民随机分配在网格上。

Python

def populate(self):

    self.all_houses = list(itertools.product(range(self.width),range(self.height)))

    random.shuffle(self.all_houses)

 

    self.n_empty = int( self.empty_ratio * len(self.all_houses) )

    self.empty_houses = self.all_houses[:self.n_empty]

 

    self.remaining_houses = self.all_houses[self.n_empty:]

    houses_by_race = [self.remaining_houses[i::self.races] for i in range(self.races)]

    for i in range(self.races):

        # 为每个种族创建 agent

        self.agents = dict(

                            self.agents.items() +

                            dict(zip(houses_by_race[i], [i+1]*len(houses_by_race[i]))).items()

 

is_unsatisfied 方法把房屋的 (x, y) 坐标作为传入参数,查看同种群邻居的比例,如果比理想阈值(happiness threshold)高则返回 True,否则返回 False。

Python

def is_unsatisfied(self, x, y):

 

    race = self.agents[(x,y)]

    count_similar = 0

    count_different = 0

 

    if x > 0 and y > 0 and (x-1, y-1) not in self.empty_houses:

        if self.agents[(x-1, y-1)] == race:

            count_similar += 1

        else:

            count_different += 1

    if y > 0 and (x,y-1) not in self.empty_houses:

        if self.agents[(x,y-1)] == race:

            count_similar += 1

        else:

            count_different += 1

    if x < (self.width-1) and y > 0 and (x+1,y-1) not in self.empty_houses:

        if self.agents[(x+1,y-1)] == race:

            count_similar += 1

        else:

            count_different += 1

    if x > 0 and (x-1,y) not in self.empty_houses:

        if self.agents[(x-1,y)] == race:

            count_similar += 1

        else:

            count_different += 1        

    if x < (self.width-1) and (x+1,y) not in self.empty_houses:

        if self.agents[(x+1,y)] == race:

            count_similar += 1

        else:

            count_different += 1

    if x > 0 and y < (self.height-1) and (x-1,y+1) not in self.empty_houses:

        if self.agents[(x-1,y+1)] == race:

            count_similar += 1

        else:

            count_different += 1        

    if x > 0 and y < (self.height-1) and (x,y+1) not in self.empty_houses:

        if self.agents[(x,y+1)] == race:

            count_similar += 1

        else:

            count_different += 1        

    if x < (self.width-1) and y < (self.height-1) and (x+1,y+1) not in self.empty_houses:

        if self.agents[(x+1,y+1)] == race:

            count_similar += 1

        else:

            count_different += 1

 

    if (count_similar+count_different) == 0:

        return False

    else:

        return float(count_similar)/(count_similar+count_different) < self.happy_threshold

 

update 方法将查看网格上的居民是否尚未满意,如果尚未满意,将随机把此人分配到空房子中。并模拟 n_iterations 次。

Python

def update(self):

    for i in range(self.n_iterations):

        self.old_agents = copy.deepcopy(self.agents)

        n_changes = 0

        for agent in self.old_agents:

            if self.is_unhappy(agent[0], agent[1]):

                agent_race = self.agents[agent]

                empty_house = random.choice(self.empty_houses)

                self.agents[empty_house] = agent_race

                del self.agents[agent]

                self.empty_houses.remove(empty_house)

                self.empty_houses.append(agent)

                n_changes += 1

        print n_changes

        if n_changes == 0:

            break

 

move_to_empty 方法把房子坐标(x, y)作为传入参数,并将 (x, y) 房间内的居民迁入空房子。这个方法被 update 方法调用,会把尚不满意的人迁入空房子。

Python

def move_to_empty(self, x, y):

    race = self.agents[(x,y)]

    empty_house = random.choice(self.empty_houses)

    self.updated_agents[empty_house] = race

    del self.updated_agents[(x, y)]

    self.empty_houses.remove(empty_house)

    self.empty_houses.append((x, y))

 

plot 方法用来绘制整个城市和居民。我们随时可以调用这个方法来了解城市的居民分布。这个方法有两个传入参数:title 和 file_name。

Python

def plot(self, title, file_name):

    fig, ax = plt.subplots()

    # 如果要进行超过 7 种颜色的仿真,你应该相应地进行设置

    agent_colors = {1:'b', 2:'r', 3:'g', 4:'c', 5:'m', 6:'y', 7:'k'}

    for agent in self.agents:

        ax.scatter(agent[0]+0.5, agent[1]+0.5, color=agent_colors[self.agents[agent]])

 

    ax.set_title(title, fontsize=10, fontweight='bold')

    ax.set_xlim([0, self.width])

    ax.set_ylim([0, self.height])

    ax.set_xticks([])

    ax.set_yticks([])

    plt.savefig(file_name)

 

4. 仿真

现在我们实现了 Schelling 类,可以模拟仿真并绘制结果。我们会按照下面的需求(characteristics)进行三次仿真:

  • 宽 = 50,而高 = 50(包含 2500 间房子)

  • 30% 的空房子

  • 相似性阈值 = 30%(针对仿真 1),相似性阈值 = 50%(针对仿真 2),相似性阈值 = 80%(针对仿真 3)

  • 最大迭代数 = 500

  • 种族数量 = 2

创建并“填充”城市。

Python

schelling_1 = Schelling(50, 50, 0.3, 0.3, 500, 2)

schelling_1.populate()

 

schelling_2 = Schelling(50, 50, 0.3, 0.5, 500, 2)

schelling_2.populate()

 

schelling_3 = Schelling(50, 50, 0.3, 0.8, 500, 2)

schelling_3.populate()

 

接下来,我们绘制初始阶段的城市。注意,相似性阈值在城市的初始状态不起作用。

Python

schelling_1_1.plot('Schelling Model with 2 colors: Initial State', 'schelling_2_initial.png')

 

下面我们运行 update 方法,绘制每个相似性阈值的最终分布。

Python

schelling_1.update()

schelling_2.update()

schelling_3.update()

 

schelling_1.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 30%', 'schelling_2_30_final.png')

schelling_2.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 50%', 'schelling_2_50_final.png')

schelling_3.plot('Schelling Model with 2 colors: Final State with Similarity Threshold 80%', 'schelling_2_80_final.png')

 

我们发现相似性阈值越高,城市的隔离度就越高。此外,我们还会发现即便相似性阈值很小,城市依旧会产生隔离。换言之,即使居民非常包容(tolerant)(相当于相似性阈值很小),还是会以隔离告终。我们可以总结出:宏观所见并非微观所为。

5. 测量隔离

以上仿真,我们只通过可视化来确认隔离发生。然而,我们却没有对隔离的计算进行定量评估。本节我们会定义这个评估标准,我们也会模拟一些仿真来确定理想阈值和隔离程度的关系。

首先在 Schelling 类中添加 calculate_similarity 方法。这个方法会计算每个 Agent 的相似性并得出均值。我们会用平均相似比评估隔离程度。

Python

def calculate_similarity(self):

    similarity = []

    for agent in self.agents:

        count_similar = 0

        count_different = 0

        x = agent[0]

        y = agent[1]

        race = self.agents[(x,y)]

        if x > 0 and y > 0 and (x-1, y-1) not in self.empty_houses:

            if self.agents[(x-1, y-1)] == race:

                count_similar += 1

            else:

                count_different += 1

        if y > 0 and (x,y-1) not in self.empty_houses:

            if self.agents[(x,y-1)] == race:

                count_similar += 1

            else:

                count_different += 1

        if x < (self.width-1) and y > 0 and (x+1,y-1) not in self.empty_houses:

            if self.agents[(x+1,y-1)] == race:

                count_similar += 1

            else:

                count_different += 1

        if x > 0 and (x-1,y) not in self.empty_houses:

            if self.agents[(x-1,y)] == race:

                count_similar += 1

            else:

                count_different += 1        

        if x < (self.width-1) and (x+1,y) not in self.empty_houses:

            if self.agents[(x+1,y)] == race:

                count_similar += 1

            else:

                count_different += 1

        if x > 0 and y < (self.height-1) and (x-1,y+1) not in self.empty_houses:

            if self.agents[(x-1,y+1)] == race:

                count_similar += 1

            else:

                count_different += 1        

        if x > 0 and y < (self.height-1) and (x,y+1) not in self.empty_houses:

            if self.agents[(x,y+1)] == race:

                count_similar += 1

            else:

                count_different += 1        

        if x < (self.width-1) and y < (self.height-1) and (x+1,y+1) not in self.empty_houses:

            if self.agents[(x+1,y+1)] == race:

                count_similar += 1

            else:

                count_different += 1

        try:

            similarity.append(float(count_similar)/(count_similar+count_different))

        except:

            similarity.append(1)

    return sum(similarity)/len(similarity)

 

接下去,我们算出每个相似性阈值的平均相似比,并绘制出相似性阈值和相似比之间的关系。

Python

similarity_threshold_ratio = {}

for i in [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]:

    schelling = Schelling(50, 50, 0.3, i, 500, 2)

    schelling.populate()

    schelling.update()

    similarity_threshold_ratio[i] = schelling.calculate_similarity()

 

fig, ax = plt.subplots()

plt.plot(similarity_threshold_ratio.keys(), similarity_threshold_ratio.values(), 'ro')

ax.set_title('Similarity Threshold vs. Mean Similarity Ratio', fontsize=15, fontweight='bold')

ax.set_xlim([0, 1])

ax.set_ylim([0, 1.1])

ax.set_xlabel("Similarity Threshold")

ax.set_ylabel("Mean Similarity Ratio")

plt.savefig('schelling_segregation_measure.png')

 

关于基于 Agent的Python是怎么实现隔离仿真就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

基于 Agent的Python是怎么实现隔离仿真

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

基于 Agent的Python是怎么实现隔离仿真

这篇文章给大家介绍基于 Agent的Python是怎么实现隔离仿真,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。我会向你介绍用基于 Agent 的模型理解复杂现象的威力。为此,我们会用到一些 Python,社会学的案例
2023-06-03

基于Python怎么实现对比Exce的工具

这篇“基于Python怎么实现对比Exce的工具”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“基于Python怎么实现对比E
2023-06-29

基于Python的人脸识别功能怎么实现

这篇文章主要介绍“基于Python的人脸识别功能怎么实现”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“基于Python的人脸识别功能怎么实现”文章能帮助大家解决问题。一、 人脸检测人脸检测是指从图像
2023-07-05

基于Python+Matplotlib怎么实现直方图的绘制

今天小编给大家分享一下基于Python+Matplotlib怎么实现直方图的绘制的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧
2023-06-30

基于Python+Turtle怎么实现绘制简易的大风车

本篇内容主要讲解“基于Python+Turtle怎么实现绘制简易的大风车”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“基于Python+Turtle怎么实现绘制简易的大风车”吧!Turtle绘制
2023-07-01

Python基于域相关实现图像增强的方法是什么

这篇文章主要讲解了“Python基于域相关实现图像增强的方法是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python基于域相关实现图像增强的方法是什么”吧!介绍当在图像上训练深度神经
2023-06-26

Python机器视觉怎么实现基于OpenCV的手势检测

本篇内容介绍了“Python机器视觉怎么实现基于OpenCV的手势检测”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!1 简介今天学长向大家介
2023-06-22

Python基于决策树算法的分类预测怎么实现

今天小编给大家分享一下Python基于决策树算法的分类预测怎么实现的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、决策树的
2023-06-26

Python基于Selenium怎么实现动态网页信息的爬取

这篇文章主要介绍“Python基于Selenium怎么实现动态网页信息的爬取”,在日常操作中,相信很多人在Python基于Selenium怎么实现动态网页信息的爬取问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答
2023-06-22

怎么用Python实现基于Pyqt5的简单电影搜索工具

这篇文章主要介绍“怎么用Python实现基于Pyqt5的简单电影搜索工具”,在日常操作中,相信很多人在怎么用Python实现基于Pyqt5的简单电影搜索工具问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么用
2023-06-02

神经网络理论基础及Python实现是怎么样的

本篇文章给大家分享的是有关神经网络理论基础及Python实现是怎么样的,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。一、多层前向神经网络多层前向神经网络由三部分组成:输出层、隐
2023-06-17

基于Python怎么实现云服务器的CDN域名远程鉴权配置

今天小编给大家分享一下基于Python怎么实现云服务器的CDN域名远程鉴权配置的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。
2023-06-30

车载导航应用中基于Sketch UI主题定制方案的实现是怎么样的

这篇文章将为大家详细讲解有关车载导航应用中基于Sketch UI主题定制方案的实现是怎么样的,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。1.导读关于应用的主题定制,相信大家或多或少都有接触
2023-06-02

基于CRF序列标注的中文依存句法分析器的Java实现是怎么样的

这篇文章给大家介绍基于CRF序列标注的中文依存句法分析器的Java实现是怎么样的,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。这是一个基于CRF的中文依存句法分析器,内部CRF模型的特征函数采用 双数组Trie树(Do
2023-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录