我的编程空间,编程开发者的网络收藏夹
学习永远不晚

pyTorch深度学习softmax实现解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

pyTorch深度学习softmax实现解析

用PyTorch实现linear模型

模拟数据集


num_inputs = 2 #feature number
num_examples = 1000 #训练样本个数
true_w = torch.tensor([[2],[-3.4]]) #真实的权重值
true_b = torch.tensor(4.2) #真实的bias
samples = torch.normal(0,1,(num_examples,num_inputs))
noise = torch.normal(0,0.01,(num_examples,1))
labels = samples.matmul(true_w) + true_b + noise

定义模型


class LinearNet(nn.Module):
	def __init__(self,in_features):
		super().__init__()
		self.fc = nn.Linear(in_features=2,out_features=1)
	def forward(self,t):
		t = self.fc(t)
		return t

加载数据集


import torch.utils.data as Data
dataset = Data.TensorDataset(samples,labels)#类似于zip,把两个张量打包
data_loader = Data.DataLoader(dataset,batch_size=100,shuffle=True)

optimizer


network = LinearNet(2)
optimizer = optim.SGD(network.paramters(),lr=0.05)

模型训练


for epoch in range(10):
    total_loss = 0
    for data,label in data_loader:
        predict = network(data)
        loss = F.mse_loss(predict,label)
        total_loss += loss.item()
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
    print(
        'epoch',epoch,
        'loss',total_loss,
        'weight',network.weight,
        'bias',network.bias
    )

softmax回归模型

sotfmax主要用于分类任务。regression最终得到的是一个scalar,根据input中的feature线性相加得到一个output。分类任务的结果是一个类别,是离散的。
假设现在有一批图片是2 * 2大小的灰度图片,这样图片中的每隔二像素用一个标量表示就行了。这批图片一种是三类小动物,第一类是小狗,第二类是小猫,第三类是小兔子。
每张图片总共4个像素点,我们可以看作是4个feature,假设这三类小动物的图片线性可分,每一类对应一组weight和一个bias。

在这里插入图片描述

可以根据输出值较大的来决定哪一类,可这样有个问题,首先输出值没有明确的意义,且可能是实数范围。其次,不好衡量输出值与真实值之间的差距。所以采用softmax操作,将三个输出值转化成概率值,这样输出结果满足概率分布。label采用one-hot编码,相当于对应类别的概率是1,这样就可以用cross_entropy来计算loss。

Fashion-MNIST

本次学习softmax模型采用torchvision.datasets中的Fashion-MNIST。


import torchvision
import torchvision.transforms as transforms
train_set = torchvision.datasets.FashionMNIST(
	root='./data',
	train=True,
	download=True,
	transform=transforms.ToTensor()
)

transforms.ToTensor()将尺寸为(H x W x C)且数据位于(0,255)的PIL图片或者数据类型为np.uint8的NumPy数组转换为尺寸为C x H x W且数据类型为torch.float32且位于(0.0,1.0)的Tensor


len(train_set),len(test_set)
> (60000,10000)

展示一下数据集中的图片


import matplotlib.pyplot as plt
plt.figure(figsize=(10,10))
for i,(image,lable) in enumerate(train_set,start=1):
	plt.subplot(1,10,i)
	plt.imshow(image.squeeze())
	plt.title(train_set.classes[lable])
	plt.axis('off')
	if i == 10:
		break
plt.show()

在这里插入图片描述


train_loader = torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True,num_workers=4)
test_loader = torch.utils.data.DataLoader(test_set,batch_size=100,shuffle=False,num_workers=1)

cross_entropy


def net(samples,w,b):
	samples = samples.flatten(start_dim=1) #将c,h,w三个轴展成一个feature轴,长度为28 * 28
	samples = torch.exp(samples)#全体元素取以e为底的指数
	partial_sum = samples.sum(dim=1,keepdim=True) 
	samples = samples / partial_sum #归一化,得概率,这里还应用了广播机制
	return samples.matmul(w) + b	

在这里插入图片描述

i表示label对应的种类,pi为真实种类的预测概率,log是以e为底的对数
这里gather函数的作用,就是在predict上取到对应label的概率值,注意负号不能丢,pytorch中的cross_entropy对输入先进行一次softmax操作,以保证输入都是正的。

模型的实现


def net(samples,w,b):
	samples = samples.flatten(start_dim=1) #将c,h,w三个轴展成一个feature轴,长度为28 * 28
	samples = torch.exp(samples)#全体元素取以e为底的指数
	partial_sum = samples.sum(dim=1,keepdim=True) 
	samples = samples / partial_sum #归一化,得概率,这里还应用了广播机制
	return samples.matmul(w) + b	

利用PyTorch简易实现softmax


import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as Data
import torchvision.transforms as transforms
import torch.optim as optim
import torch.nn.init as init
class SoftmaxNet(nn.Module):
    def __init__(self,in_features,out_features):
        super().__init__()
        self.fc = nn.Linear(in_features=in_features,out_features=out_features)
    def forward(self,t):
        t = t.flatten(start_dim=1)
        t = self.fc(t)
        return t
train_set = torchvision.datasets.FashionMNIST(
    root='E:\project\python\jupyterbook\data',
    train=True,
    download=True,
    transform=transforms.ToTensor()
)
test_set = torchvision.datasets.FashionMNIST(
    root='E:\project\python\jupyterbook\data',
    train=False,
    download=True,
    transform=transforms.ToTensor()
)
train_loader = Data.DataLoader(
    train_set,
    batch_size=100,
    shuffle=True,
    #num_workers=2
)
test_loader = Data.DataLoader(
    test_set,
    batch_size=100,
    shuffle=False,
    #num_workers=2
)
@torch.no_grad()
def get_correct_nums(predict,labels):
    return predict.argmax(dim=1).eq(labels).sum().item()
@torch.no_grad()
def evaluate(test_loader,net,total_num):
    correct = 0
    for image,label in test_loader:
        predict = net(image)
        correct += get_correct_nums(predict,label)
        pass
    return correct / total_num
network = SoftmaxNet()
optimizer = optim.SGD(network.parameters(),lr=0.05)
for epoch in range(10):
    total_loss = 0
    total_correct = 0
    for image,label in train_loader:
        predict = network(image)
        loss = F.cross_entropy(predict,label)
        total_loss += loss.item()
        total_correct += get_correct_nums(predict,label)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        pass
    print(
        'epoch',epoch,
        'loss',total_loss,
        'train_acc',total_correct / len(train_set),
        'test_acc',evaluate(test_loader,network,len(test_set))
    )

以上就是pytorch深度学习softmax实现解析的详细内容,更多关于pytorch深度学习的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

pyTorch深度学习softmax实现解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

逐步指南:安装PyTorch以实现深度学习

PyCharm教程:一步步教你安装PyTorch实现深度学习深度学习作为人工智能领域的重要分支,已经在各个领域展现出了强大的应用价值。而PyTorch作为一个开源的深度学习框架,具有灵活性和易用性,受到了广泛的关注和使用。在进行深度学习任
逐步指南:安装PyTorch以实现深度学习
2024-02-26

Python深度学习算法实例分析

本篇内容主要讲解“Python深度学习算法实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python深度学习算法实例分析”吧!最小二乘法所有的深度学习算法都始于下面这个数学公式(我已将其
2023-06-03

Pytorch深度学习经典卷积神经网络resnet模块实例分析

这篇文章主要介绍“Pytorch深度学习经典卷积神经网络resnet模块实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch深度学习经典卷积神经网络resnet模块实例分析”文章能帮
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录