Pytorch linear 多维输入的参数问题
短信预约 -IT技能 免费直播动态提醒
问题: 由于 在输入lstm 层 每个batch 做了根据输入序列最大长度做了padding,导致每个 batch 的 length 不同。 导致输出 长度不同 。如:(batch, length, output_dim): (12,128,10),(12,111,10). 但是输入 linear 层的时候没有出现问题。
网站解释:
官网 pytorch linear:
- Input:(*, H_{in})(∗,Hin)where*∗means any number of dimensions including none andH_{in} = \text{in\_features}Hin=in_features. 任意维度 number 理解有歧义 (a)number. k可以理解三维,四维。。。 (b) 可以理解 为某一维度的数 。
- Output:(*, H_{out})(∗,Hout)where all but the last dimension are the same shape as the input andH_{out} = \text{out\_features}Hout=out_features.
代码解释:
分别 用三维 和二维输入数组,查看他们参数数目是否一样。
import torch
x = torch.randn(128, 20) # 输入的维度是(128,20)
m = torch.nn.Linear(20, 30) # 20,30是指维度
output = m(x)
print('m.weight.shape:\n ', m.weight.shape)
print('m.bias.shape:\n', m.bias.shape)
print('output.shape:\n', output.shape)
# ans = torch.mm(input,torch.t(m.weight))+m.bias 等价于下面的
ans = torch.mm(x, m.weight.t()) + m.bias
print('ans.shape:\n', ans.shape)
print(torch.equal(ans, output))
output:
m.weight.shape:
torch.Size([30, 20])
m.bias.shape:
torch.Size([30])
output.shape:
torch.Size([128, 30])
ans.shape:
torch.Size([128, 30])
True
x = torch.randn(128, 30,20) # 输入的维度是(128,30,20)
m = torch.nn.Linear(20, 30) # 20,30是指维度
output = m(x)
print('m.weight.shape:\n ', m.weight.shape)
print('m.bias.shape:\n', m.bias.shape)
print('output.shape:\n', output.shape)
ouput:
m.weight.shape:
torch.Size([30, 20])
m.bias.shape:
torch.Size([30])
output.shape:
torch.Size([128, 30, 30])
结果:
(128,30,20),和 (128,20) 分别是如 nn.linear(30,20) 层。
weight.shape 均为: (30,20)
linear() 参数数目只和 input_dim ,output_dim 有关。
weight 在源码的定义, 没找到如何计算多维input的代码。
到此这篇关于Pytorch linear 多维 输入的参数的文章就介绍到这了,更多相关Pytorch多维 输入内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341