我的编程空间,编程开发者的网络收藏夹
学习永远不晚

20190524-矩阵算法,矩阵相加,矩

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

20190524-矩阵算法,矩阵相加,矩

1.二维矩阵的转置

arrA = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]
def turn(arr):
    if not arr:
        return []
    result = []
    for i in range(len(arr[0])):#原来的列变成行
        temp =[]
        for j in range(len(arr)):#原来的行变成列
            temp.append(arr[j][i])
        result.append(temp)
    return result
print(turn(arrA))

2.矩阵相加,A,B矩阵均需要为一个N*M的矩阵,即相加矩阵的行和列必须相等

def matrix_add(arrA,arrB):
    if not arrA and not arrB:
        return []
    if len(arrA)!=len(arrB)or len(arrA[0])!=len(arrA[0]):
        return 'Error'
    arrC = [[None]*len(arrA[0]) for row in range(len(arrA))]#首先定义结果矩阵
    for i in range(len(arrA)):
        for j in range(len(arrA[i])):
            arrC[i][j] = arrA[i][j] + arrB[i][j]
    return arrC
A = [[1,3,5,4],[7,9,1,3],[13,15,17,42]]
B = [[9,8,7,1],[6,5,4,2],[3,2,1,3]]
print(matrix_add(A,B))

3.矩阵相乘,A,B矩阵需要满足条件为A为m*n的矩阵,B为n*p的矩阵,结果C为m*p的矩阵

C11 = A11*B11+A12*B21+....+A1n*Bn1
C1P = A11*B1p+A12*B2p+...+A1n*Bnp
CMP = Am1*B1p+Am2*B2p+...+Amn*Bnp
arrA的第一个index等于C的第一个index,arrA的第二个index每次逐渐增加
arrB的第一个index每次逐渐增加,同时arrB的第二个index等于C的第二个index。因此,因为C是一个m*p的矩阵
arrA的第一个index= i
arrA的第二个index= k
arrB的第一个index= k
arrB的第二个index= j
A = [[1,3,5],[7,9,11],[13,15,17]]
B = [[9,8],[6,5],[3,2]]

def MatrixMultiply(arrA,arrB):
    if len(arrA[0])!=len(arrB):
        return False
    M = len(A)
    N = len(A[0])
    P = len(B[0])
    arrC = [[None] * P for row in range(M)]
    for i in range(len(arrA)):
        for j in range(len(arrB[0])):
            temp = 0
            for k in range(len(arrB)):
                #print(arrA[i][k],arrB[k][j],end =' ')
                temp = temp+int(arrA[i][k])*int(arrB[k][j])#实现C1P = A11*B1p+A12*B2p+...+A1n*Bnp
            arrC[i][j] = temp
    return arrC

print(MatrixMultiply(A,B))

4.编写函数利用三项式压缩稀疏矩阵
稀疏矩阵:一个矩阵的大部分元素为0,则是稀疏矩阵
三项式:非零项用(i,j,item-value)来表示,假定一个稀疏矩阵有n个非零项,则可以用一个A(0:N,1:3)的二维数组来存储这些非零项
A(0,1)存储稀疏矩阵的行数
A(0,2)存储稀疏矩阵的列数
A(0,3)存储稀疏矩阵的非零项
每个非零项用(i,j,item-value)来表示

def Sparse_Transfer2_Trinomial(sparse):
    trinomial = []
    print(trinomial)
    if not sparse:
        return trinomial
    non_zero = 0
    for i in range(len(sparse)):
        for j in range(len(sparse[i])):
            #print(sparse[i][j])
            if sparse[i][j]:#sparse[i][j]非0
                non_zero+=1
                trinomial.append([i,j,sparse[i][j]])
    trinomial.insert(0,[len(sparse),len(sparse[0]),non_zero])
    return trinomial
Sparse = [[15,0,0,22,0,-15],[0,11,3,0,0,0],[0,0,0,-6,0,0],[0,0,0,0,0,0,0],[91,0,0,0,0,0],[0,0,28,0,0,0]]
print(Sparse_Transfer2_Trinomial(Sparse))

 5.利用三项式转置稀疏矩阵

 先定义稀疏矩阵,将行列交换,其他的位置填充0

def Turn_Sparse(trinomial):
    sparse = [[0]*trinomial[0][1] for i in range(trinomial[0][0])]
    for each in trinomial[1:]:
        sparse[each[1]][each[0]] = each[2]
    return sparse
print(Turn_Sparse(Sparse_Transfer2_Trinomial(Sparse)))

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

20190524-矩阵算法,矩阵相加,矩

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

20190524-矩阵算法,矩阵相加,矩

1.二维矩阵的转置arrA = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]def turn(arr): if not arr: return [] result
2023-01-31

mat矩阵和npy矩阵怎么实现互相转换

这篇“mat矩阵和npy矩阵怎么实现互相转换”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“mat矩阵和npy矩阵怎么实现互相
2023-07-02

python中矩阵相加函数sum()

假如矩阵A是n*n的矩阵A.sum()是计算矩阵A的每一个元素之和。A.sum(axis=0)是计算矩阵每一列元素相加之和。A.Sum(axis=1)是计算矩阵的每一行元素相加之和。
2023-01-31

java实现的n*n矩阵求值及求逆矩阵算法示例

本文实例讲述了java实现的n*n矩阵求值及求逆矩阵算法。分享给大家供大家参考,具体如下:先来看看运行结果:java版的写出来了,用的跟c语言相同的算法,然后看看能不能以后加个框做成程序:import java.math.*;import
2023-05-31

python矩阵乘法怎么算

在 python 中,使用 numpy 库的 matmul() 函数对矩阵执行乘法:创建矩阵。使用 matmul() 函数进行矩阵乘法。Python中矩阵乘法的计算如何计算Python中矩阵的乘法?使用NumPy库的matmul()函数
python矩阵乘法怎么算
2024-05-22

每日算法:旋转矩阵

给你一幅由 N × N 矩阵表示的图像,其中每个像素的大小为 4 字节。请你设计一种算法,将图像旋转 90 度。

每日算法:螺旋矩阵

给定一个正整数 n,生成一个包含 1 到 n2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。

python中的矩阵运算

转自:https://www.cnblogs.com/chamie/p/4870078.html摘自:http://m.blog.csdn.net/blog/taxueguilai1992/46581861python的numpy库提供矩阵
2023-01-31

Numpy中的矩阵运算

安装与使用大型矩阵运算主要用matlab或者sage等专业的数学工具,但我这里要讲讲python中numpy,用来做一些日常简单的矩阵运算!这是 numpy官方文档,英文不太熟悉的,还有 numpy中文文档numpy 同时支持 python
2023-01-31

常见矩阵运算Python

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。1.numpy的导入和使用from numpy import *;#导入numpy的库函数import numpy as np; #这个方式
2023-01-31

python的常见矩阵运算

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包。1.numpy的导入和使用from numpy import *;#导入numpy的库函数import numpy as np; #这个方式
2023-01-31

关于python的矩阵乘法运算

这篇文章主要介绍了关于python的矩阵乘法运算,矩阵是一个数字阵列,一个二维数组,n行r列的阵列称为n*r矩阵。如果n==r则称为方阵,需要的朋友可以参考下
2023-05-17

使用Numpy计算矩阵的逆

Numpy是一个用于科学计算的Python库,提供了强大的多维数组对象和相应的操作函数。在Numpy中,可以使用线性代数模块(numpy.linalg)来计算矩阵的逆矩阵。本文将详细介绍Numpy如何计算矩阵的逆矩阵,并提供具体的代码示例。
使用Numpy计算矩阵的逆
2024-01-24

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录