我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python机器学习GCN图卷积神经网络原理解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python机器学习GCN图卷积神经网络原理解析

1. 图信号处理知识

图卷积神经网络涉及到图信号处理的相关知识,也是由图信号处理领域的知识推导发展而来,了解图信号处理的知识是理解图卷积神经网络的基础。

1.1 图的拉普拉斯矩阵

拉普拉斯矩阵是体现图结构关联的一种重要矩阵,是图卷积神经网络的一个重要部分。

1.1.1 拉普拉斯矩阵的定义及示例

实例:

按照上述计算式子,可以得到拉普拉斯矩阵为:

1.1.2 正则化拉普拉斯矩阵

1.1.3 拉普拉斯矩阵的性质

1.2 图上的傅里叶变换

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。它将信号从时域转换到频域,从频域视角给出了信号处理的另一种解法。(1)对于图结构,可以定义图上的傅里叶变换(GFT),对于任意一个在图G上的信号x,其傅里叶变换表示为:

从线代角度,可以清晰的看出:v1,…, vn构成了N维特征空间中的一组完备基向量,G中任意一个图信号都可表示为这些基向量的线性加权求和,系数为图信号对应傅里叶基上的傅里叶系数。

回到之前提到的拉普拉斯矩阵刻画平滑度的总变差:

可以看成:刻画图平滑度的总变差是图中所有节点特征值的线性组合,权值为傅里叶系数的平方。总变差取最小值的条件是图信号与最小的特征值所对应的特征向量完全重合,结合其描述图信号整体平滑度的意义,可将特征值等价成频率:特征值越低,频率越低,对应的傅里叶基变化缓慢,即相近节点的信号值趋于一致。

把图信号所有的傅里叶系数结合称为频谱(spectrum),频域的视角从全局视角既考虑信号本身,也考虑到图的结构性质。

1.3 图信号滤波器

图滤波器(Graph Filter)为对图中的频率分量进行增强或衰减,图滤波算子核心为其频率响应矩阵,为滤波器带来不同的滤波效果。

故图滤波器根据滤波效果可分为低通,高通和带通。

低通滤波器:保留低频部分,关注信号的平滑部分;

高通滤波器:保留高频部分,关注信号的剧烈变化部分;

带通滤波器:保留特定频段部分;

而拉普拉斯矩阵多项式扩展可形成图滤波器H:

2. 图卷积神经网络

2.1 数学定义

图卷积运算的数学定义为:

上述公式存在一个较大问题:学习参数为N,这涉及到整个图的所有节点,对于大规模数据极易发生过拟合。

进一步的化简推导:将之前说到的拉普拉斯矩阵的多项式展开代替上述可训练参数矩阵。

此结构内容即定义为图卷积层(GCN layer),有图卷积层堆叠得到的网络模型即为图卷积网络GCN。

2.2 GCN的理解及时间复杂度

图卷积层是对频率响应矩阵的极大化简,将本要训练的图滤波器直接退化为重归一化拉普拉斯矩阵

2.3 GCN的优缺点

优点:GCN作为近年图神经网络的基础之作,对处理图数据非常有效,其对图结构的结构信息和节点的属性信息同时学习,共同得到最终的节点特征表示,考虑到了节点之间的结构关联性,这在图操作中是非常重要的。

缺点:过平滑问题(多层叠加之后,节点的表示向量趋向一致,节点难以区分),由于GCN具有一个低通滤波器的作用(j聚合特征时使得节点特征不断融合),多次迭代后特征会趋于相同。

3. Pytorch代码解析

GCN层的pytorch实现:

class GraphConvolutionLayer(nn.Module):
    '''
        图卷积层:Lsym*X*W
            其中 Lsym表示正则化图拉普拉斯矩阵, X为输入特征, W为权重矩阵, X'表示输出特征;
            *表示矩阵乘法
    '''
    def __init__(self, input_dim, output_dim, use_bias=True):
        #初始化, parameters: input_dim-->输入维度, output_dim-->输出维度, use_bias-->是否使用偏置项, boolean
        super(GraphConvolutionLayer,self).__init__()
        self.input_dim=input_dim
        self.output_dim=output_dim
        self.use_bias=use_bias #是否加入偏置, 默认为True
        self.weight=nn.Parameter(torch.Tensor(input_dim, output_dim))#权重矩阵为可训练参数
        if self.use_bias==True: #加入偏置
            self.bias=nn.Parameter(torch.Tensor(output_dim)) 
        else: #设置偏置为空
            self.register_parameter('bias', None)
        self.reset_parameters()
    def reset_parameters(self):
        #初始化参数
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)#使用均匀分布U(-stdv,stdv)初始化权重Tensor
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)
    def forward(self, adj, input_feature):
        #前向传播, parameters: adj-->邻接矩阵(输入为正则化拉普拉斯矩阵), input_future-->输入特征矩阵
        temp=torch.mm(input_feature, self.weight)#矩阵乘法, 得到X*W
        output_feature=torch.sparse.mm(adj, temp)#由于邻接矩阵adj为稀疏矩阵, 采用稀疏矩阵乘法提高计算效率, 得到Lsym*temp=Lsym*X*W
        if self.use_bias==True: #若设置了偏置, 加入偏置项
            output_feature+=self.bias
        return output_feature

定义两层的GCN网络模型:

class GCN(nn.Module):
    '''
        定义两层GCN网络模型
    '''
    def __init__(self, input_dim, hidden_dim, output_dim):
        #初始化, parameters: input_dim-->输入维度, hidden_dim-->隐藏层维度, output_dim-->输出维度
        super.__init__(GCN, self).__init__()
        #定义两层图卷积层
        self.gcn1=GraphConvolutionLayer(input_dim, hidden_dim)
        self.gcn2=GraphConvolutionLayer(hidden_dim, output_dim)
    def forward(self, adj, feature):
        #前向传播, parameters: adj-->邻接矩阵, feature-->输入特征
        x=F.relu(self.gcn1(adj, feature))
        x=self.gcn2(adj, x)
        return F.log_softmax(x, dim=1)

以上就是GCN图卷积神经网络原理及代码解析的详细内容,更多关于GCN图卷积神经网络的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python机器学习GCN图卷积神经网络原理解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python机器学习GCN图卷积神经网络的原理是什么

这篇文章主要介绍“python机器学习GCN图卷积神经网络的原理是什么”,在日常操作中,相信很多人在python机器学习GCN图卷积神经网络的原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytho
2023-06-30

python机器学习之神经网络的示例分析

这篇文章主要介绍了python机器学习之神经网络的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python可以做什么Python是一种编程语言,内置了许多有效的工具
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录