我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python机器学习实现神经网络示例解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python机器学习实现神经网络示例解析

单神经元引论

请添加图片描述

对于如花,大美,小明三个因素是如何影响小强这个因素的。

请添加图片描述

这里用到的是多元的线性回归,比较基础


from numpy import array,exp,dot,random

其中dot是点乘
导入关系矩阵:

在这里插入图片描述


X= array ( [ [0,0,1],[1,1,1],[1,0,1],[0,1,1]])
y = array( [ [0,1,1,0]]).T ## T means "transposition"

为了满足0到1的可能性,我们采用激活函数
matlab作图


x=[-8:0.001:8]
y=1./(1+exp(-x))
plot(x,y)
grid on
text(-6,0.8,['$\frac{1}{1+e^{-x}}$'],'interpreter','latex','fontsize',25)

请添加图片描述

然后


for it in range(10000):
	z=dot(X,weights)
    output=1/(1+exp(-z))##'dot' play role of "dot product"
    error=y-output
    delta=error*output*(1-output)
    weights+=dot(X.T,delta)

请添加图片描述

其中


delta=error*output*(1-output)

是求导的结果和误差相乘,表示梯度

请添加图片描述

具体数学流程

所以具体流程如下,X具体化了一下

请添加图片描述

error即为每个带权参数经过激活函数映射后到y结果的量化距离

在这里插入图片描述

最终代码:(PS:默认lr取1,可修改)


from numpy import array,exp,dot,random
"""
Created on vscode 10/22/2021
@author Squirre17
"""
X=array([[0,0,1],[1,1,1],[1,0,1],[0,1,1]])
y=array([[0,1,1,0]]).T ## T means "transposition"
random.seed(1)
epochs=10000
weights=2*random.random((3,1))-1## 3 row 1 line, range[-1,1)
for it in range(epochs):
    output=1/(1+exp(-dot(X,weights)))##'dot' play role of "dot product"
    error=y-output
    slope=output*(1-output)
    delta=error*slope
    weights+=dot(X.T,delta)

print(weights)
print(1/(1+exp( -dot([[1,0,0]], weights))))

参考

请添加图片描述

多神经元

请添加图片描述

这个意思就是两个美女XOR
单神经元没法解决,只能解决单一线性关系

请添加图片描述

在这里插入图片描述

代码如下,可自行调整epocheslr


from numpy import array,exp,dot,random
"""
Created on vscode 10/22/2021
@author Squirre17
"""
X=array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]])
y=array([[0,1,1,0]]).T # T means "transposition"
random.seed(1)
epochs=100000
w0=2*random.random((3,4))-1 # input layer neure
w1=2*random.random((4,1))-1 # hidden layer neure
lr=1
def fp(input):
    l1=1/(1+exp(-dot(input,w0))) # 4×4
    l2=1/(1+exp(-dot(l1,w1))) # 4×1
    return l1,l2
def bp(l1,l2,y):
    l2_error=y-l2
    l2_slope=l2*(1-l2)
    l1_delta=l2_error*l2_slope*lr # 4×1
    l1_error=l1_delta.dot(w1.T)
    l1_slope=l1*(1-l1)
    l0_delta=l1_error*l1_slope*lr
    return l0_delta,l1_delta
for it in range(epochs):
    l0=X
    l1,l2=fp(l0)
    l0_delta,l1_delta=bp(l1,l2,y)
    w1+=dot(l1.T,l1_delta) # 4×4 4×1 # adjust w1 according to loss
    w0+=dot(l0.T,l0_delta)
print(fp([[1,0,0]])[1])

其中关于l1_error=l1_delta.dot(w1.T),就是第三层的误差反向加权传播给第二层

请添加图片描述

以上就是python机器学习实现神经网络示例解析的详细内容,更多关于python机器学习实现神经网络的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python机器学习实现神经网络示例解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python机器学习之神经网络的示例分析

这篇文章主要介绍了python机器学习之神经网络的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python可以做什么Python是一种编程语言,内置了许多有效的工具
2023-06-14

Pytorch深度学习经典卷积神经网络resnet模块实例分析

这篇文章主要介绍“Pytorch深度学习经典卷积神经网络resnet模块实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Pytorch深度学习经典卷积神经网络resnet模块实例分析”文章能帮
2023-06-30

Python基于TensorFlow接口实现深度学习神经网络回归

这篇文章主要为大家详细介绍了如何基于Python语言中TensorFlow的tf.estimator接口,实现深度学习神经网络回归的具体方法,感兴趣的可以了解一下
2023-02-17

Python底层技术解析:如何实现神经网络

Python底层技术解析:如何实现神经网络,需要具体代码示例在现代人工智能领域中,神经网络是最为常用和重要的技术之一。它模拟人脑的工作原理,通过多层神经元的连接来实现复杂的任务。Python作为一门功能强大且易于使用的编程语言,为实现神经网
Python底层技术解析:如何实现神经网络
2023-11-08

python机器学习GCN图卷积神经网络的原理是什么

这篇文章主要介绍“python机器学习GCN图卷积神经网络的原理是什么”,在日常操作中,相信很多人在python机器学习GCN图卷积神经网络的原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytho
2023-06-30

Java实现BP神经网络MNIST手写数字识别的示例详解

这篇文章主要为大家详细介绍了Java实现BP神经网络MNIST手写数字识别的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起了解一下
2023-01-31

Python实现的人工神经网络算法示例【基于反向传播算法】

本文实例讲述了Python实现的人工神经网络算法。分享给大家供大家参考,具体如下: 注意:本程序使用Python3编写,额外需要安装numpy工具包用于矩阵运算,未测试python2是否可以运行。 本程序实现了《机器学习》书中所述的反向传播
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录