我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python机器学习之神经网络

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python机器学习之神经网络

手写数字识别算法


import pandas as pd
import numpy as np
from sklearn.neural_network import MLPRegressor  #从sklearn的神经网络中引入多层感知器

data_tr = pd.read_csv('BPdata_tr.txt')  # 训练集样本
data_te = pd.read_csv('BPdata_te.txt')  # 测试集样本
X=np.array([[0.568928884039633],[0.379569493792951]]).reshape(1, -1)#预测单个样本

#参数:hidden_layer_sizes中间层的个数  activation激活函数默认relu  f(x)= max(0,x)负值全部舍去,信号相应正向传播效果好
#random_state随机种子,max_iter最大迭代次数,即结束,learning_rate_init学习率,学习速度,步长
model = MLPRegressor(hidden_layer_sizes=(10,), activation='relu',random_state=10, max_iter=8000, learning_rate_init=0.3)  # 构建模型,调用sklearn实现神经网络算法
model.fit(data_tr.iloc[:, :2], data_tr.iloc[:, 2])    # 模型训练(将输入数据x,结果y放入多层感知器拟合建立模型) .iloc是按位置取数据
pre = model.predict(data_te.iloc[:, :2])              # 模型预测(测试集数据预测,将实际结果与预测结果对比)

pre1 = model.predict(X)#预测单个样本,实际值0.467753075712819
err = np.abs(pre - data_te.iloc[:, 2]).mean()# 模型预测误差(|预测值-实际值|再求平均)

print("模型预测值:",pre,end='\n______________________________\n')
print('模型预测误差:',err,end='\n++++++++++++++++++++++++++++++++\n')
print("单个样本预测值:",pre1,end='\n++++++++++++++++++++++++++++++++\n')

#查看相关参数。
print('权重矩阵:','\n',model.coefs_) #list,length n_layers - 1,列表中的第i个元素表示对应于层i的权重矩阵。
print('偏置矩阵:','\n',model.intercepts_) #list,length n_layers - 1,列表中的第i个元素表示对应于层i + 1的偏置矢量。

在这里插入图片描述

数字手写识别系统


#数字手写识别系统,DBRHD和MNIST是数字手写识别的数据集
import numpy as np  # 导入numpy工具包
from os import listdir  # 使用listdir模块,用于访问本地文件
from sklearn.neural_network import MLPClassifier #从sklearn的神经网络中引入多层感知器

#自定义函数,将图片转换成向量
def img2vector(fileName):
    retMat = np.zeros([1024], int)  # 定义返回的矩阵,大小为1*1024
    fr = open(fileName)  # 打开包含32*32大小的数字文件
    lines = fr.readlines()  # 读取文件的所有行
    for i in range(32):  # 遍历文件所有行
        for j in range(32):  # 并将01数字存放在retMat中
            retMat[i * 32 + j] = lines[i][j]
    return retMat

#自定义函数,获取数据集
def readDataSet(path):
    fileList = listdir(path)  # 获取文件夹下的所有文件
    numFiles = len(fileList)  # 统计需要读取的文件的数目
    dataSet = np.zeros([numFiles, 1024], int)  # 用于存放所有的数字文件juzheng
    hwLabels = np.zeros([numFiles, 10])  # 用于存放对应的one-hot标签(每个文件都对应一个10列的矩阵)
    for i in range(numFiles):  # 遍历所有的文件
        filePath = fileList[i]  # 获取文件名称/路径
        digit = int(filePath.split('_')[0])  # 通过文件名获取标签,split返回分割后的字符串列表
        hwLabels[i][digit] = 1.0  # 将对应的one-hot标签置1 .one-hot编码,又称独热编码、一位有效编码.one-hot向量将类别变量转换为机器学习算法易于利用的一种形式的过程,这个向量的表示为一项属性的特征向量,也就是同一时间只有一个激活点(不为0),这个向量只有一个特征是不为0的,其他都是0,特别稀疏。
        dataSet[i] = img2vector(path + '/' + filePath)  # 读取文件内容
    return dataSet, hwLabels


#读取训练数据,并训练模型
train_dataSet, train_hwLabels = readDataSet('trainingDigits')

#参数:hidden_layer_sizes中间层的个数,activation激活函数 logistic:f(x)=1/(1+exp(-x))将值映射在一个0~1的范围内。
#solver权重优化的求解器adam默认,用于较大的数据集,lbfgs用于小型的数据集收敛的更快效果更好。max_iter迭代次数越多越准确
clf = MLPClassifier(hidden_layer_sizes=(50,),activation='logistic', solver='adam',learning_rate_init=0.001, max_iter=700)
clf.fit(train_dataSet, train_hwLabels)#数据集,标签,拟合

# 读取测试数据对测试集进行预测
dataSet, hwLabels = readDataSet('testDigits')
res = clf.predict(dataSet) #预测结果是标签([numFiles, 10]的矩阵) 
print("测试数据",dataSet,'\n___________________________________\n')
print("测试标签",hwLabels,'\n++++++++++++++++++++++++++++++++++++++++\n')
print("测试结果",res)


error_num = 0  # 统计预测错误的数目
num = len(dataSet)  # 测试集的数目
for i in range(num):  # 遍历预测结果
    # 比较长度为10的数组,返回包含01的数组,0为不同,1为相同
    # 若预测结果与真实结果相同,则10个数字全为1,否则不全为1
    if np.sum(res[i] == hwLabels[i]) < 10:
        error_num += 1
print("Total num:", num, " Wrong num:",error_num, "  WrongRate:", error_num / float(num))

在这里插入图片描述

可视化MNIST是数字手写识别的数据集


from keras.datasets import mnist#导入数字手写识别系统的数据集
import matplotlib.pyplot as plt

(X_train, y_train), (X_test, y_test) = mnist.load_data()
#以2*2(2行2列)图的方式展现
plt.subplot(221)
plt.imshow(X_train[1], cmap=plt.get_cmap('gray_r'))#白底黑字
plt.subplot(222)
plt.imshow(X_train[2], cmap=plt.get_cmap('gray'))#黑底白字
plt.subplot(223)
plt.imshow(X_train[3], cmap=plt.get_cmap('gray'))
plt.subplot(224)
plt.imshow(X_train[4], cmap=plt.get_cmap('gray'))
# show the plot
plt.show()

在这里插入图片描述

到此这篇关于python机器学习之神经网络的文章就介绍到这了,更多相关python神经网络内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python机器学习之神经网络

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python机器学习之神经网络的示例分析

这篇文章主要介绍了python机器学习之神经网络的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。python可以做什么Python是一种编程语言,内置了许多有效的工具
2023-06-14

机器学习、深度学习和神经网络之间的区别和联系

机器学习、深度学习和神经网络是人工智能领域相互关联的技术。机器学习赋予计算机从数据中学习的能力,深度学习则使用神经网络提取更高级别的特征,神经网络受人脑运作启发,处理输入数据并输出预测。这些技术之间的区别在于复杂性、层数和数据需求。联系在于机器学习是深度学习的基础,神经网络是深度学习架构的基石,三者共同用于从数据中提取知识并做出预测,广泛应用于图像识别、自然语言处理等领域。
机器学习、深度学习和神经网络之间的区别和联系
2024-04-02

python机器学习GCN图卷积神经网络的原理是什么

这篇文章主要介绍“python机器学习GCN图卷积神经网络的原理是什么”,在日常操作中,相信很多人在python机器学习GCN图卷积神经网络的原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”pytho
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录