我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据分析之matplotlib.pypl

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据分析之matplotlib.pypl

  首先都得导模块。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pandas import Series,DataFrame

  一、绘制单线图

  1,直线图

x=[1,2,3,4,5]
y=[2,4,6,8,10]
plt.plot(x,y)

  2,抛物线

x = np.arange(-np.pi,np.pi,0.2)
y = x**2
plt.plot(x,y)

  3,正弦图

x = np.arange(-np.pi,np.pi,0.2)
y = np.cos(x)
plt.plot(x,y)

  这里得到图形取决于x跟y的关系

  二、绘制多个曲线的图

  1,连续调用多次plot函数

plt.plot(x,y)
plt.plot(x+3,y+3)

  2,也可以在一个plot函数中传入多对x,y值

plt.plot(x,y,x+10,y+10)

  3,将多个曲线绘制在一个table区域中:对象形式创建表图

a=plt.subplot(row,col,loc)创建曲线图对象
a.plot(x,y)
ax1 = plt.subplot(2,2,1)
ax1.plot(x,y)
ax1.grid()
ax2 = plt.subplot(2,2,2)
ax2.plot(x,y)
ax3 = plt.subplot(2,2,3)
ax3.plot(x,y)
ax4 = plt.subplot(2,2,4)
ax4.plot(x,y)

  三、plt的一些样式设置

  1,设置网格线,plt.grid()

参数:
axis:控制方向
color:支持十六进制颜色
linestyle:线的形状
alpha:透明度

plt.grid(axis='both')
plt.plot(x,y)

  2,坐标轴界限

axis方法设置x,y轴刻度值的范围
plt.axis([xmin,xmax,ymin,ymax])

plt.axis([-6,6,-2,2])
plt.plot(x,y)

  通过设置plt.axis('off')可以把坐标轴刻度给关闭,我们就只会看到图,而看不到刻度

  3,设置画布比例

plt.figure(figsize=(a,b)) a:x刻度比例 b:y刻度比例 (2:1)表示x刻度显示为y刻度显示的2倍

plt.figure(figsize=(8,18))
plt.plot(x,y)

  4,设置x轴,y轴,图片的名称

plt.xlabel('xxx')
plt.ylabel('yyy')
plt.title('ttt')
plt.plot(x,y)

  5,设置图例

  5.1 分别在plot函数中添加label参数,在调用plt.legend()方法显示

plt.plot(x,y,label='aaa')
plt.plot(x+3,y+3,label='bbb')
plt.legend()

  5.2 直接在legend()方法中传入字符串列表

plt.plot(x,y,x+3,y+3)
plt.legend(['aaa','bbb'])

  5.3 还可以设置legend()方法的参数调整图例的位置和显示样式

loc参数用于设置图例标签的位置,一般在legend函数内

ncol控制图例中有几列,在legend中设置ncol
plt.plot(x,y,x+3,y+3)
plt.legend(['aaa','bbb'],loc=3,ncol=2)

  6,保存图片

使用figure对象的savefig函数来保存图片
fig = plt.figure()---必须放置在绘图操作之前
figure.savefig的参数选项
filename:含有文件路径的字符串或Python的文件型对象。图像格式由文件扩展名推断得出,例如,.pdf推断出PDF,.png推断出PNG (“png”、“pdf”、“svg”、“ps”、“eps”……)
dpi:图像分辨率(每英寸点数),默认为100
facecolor ,打开保存图片查看 图像的背景色,默认为“w”(白色)

fig = plt.figure()
plt.plot(x,y,x+3,y+3)
plt.legend(['aaa','bbb'],loc=3,ncol=2)
fig.savefig('./img.png',dpi=500)

  四、plot的参数设置

color或c:颜色,如‘r’或‘red’红色,‘g’绿色;也可以是十六进制,如'#eeefff';还可以RGB元祖,(0.2,0.3,0.4),值只能是0到1
alpha透明度
参数linestyle或ls线型
参数linewidth或lw线宽
marker点型
markersize点的大小

  五、直方图

是一个特殊的柱状图,又叫做密度图。
【直方图的参数只有一个x!!!不像条形图需要传入x,y】
plt.hist()的参数
bins  :直方图的柱数,可选项,默认为10
color  :指定直方图的颜色。可以是单一颜色值或颜色的序列。如果指定了多个数据集合,例如DataFrame对象,颜色序列将会设置为相同的顺序。如果未指定,将会使用一个默认的线条颜色
orientation  :通过设置orientation为horizontal创建水平直方图。默认值为vertical
data=[1,2,3,2,3,1,4,5,2,2]
plt.hist(data,bins=10)   #data数据时1到5,所以它会把1到5之间分成11个区域,把每个区域所包含数据的个数给统计出来

  六、条形图

- 参数:第一个参数是索引。第二个参数是数据值。第三个参数是条形的宽度
- width 纵向设置条形宽度
- height 横向设置条形高度
bar()纵向、barh()横向
data1=[2,4,1,5]
data2=[3,5,1,6]
plt.bar(data1,data2)

plt.barh(data1,data2)

  七、饼图

  饼图主要有两种,取决于第一个数据参数,首先数据的是一个列表,但列表中出现整数时,每块占比等于自身值除以所有值总和,这种情况下占比总和为1;当每个值都是0到1之间,而且总和小于等于1,那么每个的占比就是自身值,这种情况下,占比总和就不一定为1了。

  1,占比总和肯定为1的

plt.pie([2,4,6])   #表示的是2占12的比例,4占12的比例,6占12的比例

  2,占比总和不一定为1的

plt.pie([0.2,0.4,0.1])#表示0.1占10%,0.2占20%,0.4占40%

  3,属性设置

饼图阴影、分裂等属性设置
#labels参数设置每一块的标签;
#labeldistance参数设置标签距离圆心的距离(比例值)
#autopct参数设置比例值小数保留位(%.3f%%);
#pctdistance参数设置比例值文字距离圆心的距离
#explode参数设置每一块顶点距圆心的长度(比例值,列表);
#colors参数设置每一块的颜色(列表);
#shadow参数为布尔值,设置是否绘制阴影
#startangle参数设置饼图起始角度

  3.1 给每一块设置标签

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'])

  3.2 给标签设置离中心的距离

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'],labeldistance=0.5)

  3.3 数值表示每块的占比,并设置占比离中心的距离

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'],labeldistance=0.5,autopct='%.2f%%',pctdistance=0.8)

  3.4 设置每块顶点离中心的距离

arr=[2,4,6]
plt.pie(arr,labels=['a','b','c'],labeldistance=0.5,autopct='%.2f%%',pctdistance=0.8,explode=[0.2,0.4,0.3])

 

  八、散点图

散点图需要两个参数x,y,但此时x不是表示x轴的刻度,而是每个点的横坐标!
scatter()
x = np.random.random(size=(100))
y = np.random.random(size=(100))
plt.scatter(x,y)

  1,meshgrid()和散点图结合扩展

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

x1=np.arange(1,5,0.01)
y1=np.arange(1,5,0.01)

arr1=np.meshgrid(x1,y1)[0]
arr2=np.meshgrid(x1,y1)[1]

plt.scatter(arr1,arr2)

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据分析之matplotlib.pypl

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

数据分析之matplotlib.pypl

首先都得导模块。import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom pandas import Series,DataFrame  一、绘制单线图
2023-01-30

python数据分析之pandas数据选

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式
2023-01-30

数据分析利器之Pandas

Pandas是一个python的开源库,它基于Numpy,提供了多种高性能且易于使用的数据结构。Pandas最初被用作金融数据分析工具而开发,由于它有着强大的功能,目前广泛应用于数据分析、机器学习以及量化投资等。下面来跟随作者一起认识下Pa
2023-06-02

数据分析之pandas模块

一、Series  类似于一位数组的对象,第一个参数为数据,第二个参数为索引(索引可以不指定,就默认用隐式索引)Series(data=np.random.randint(1,50,(10,)))Series(data=[1,2,3],in
2023-01-30

Python数据分析之pandas读取数据

一、三种数据文件的读取二、csv、tsv、txt 文件读取 1)CSV文件读取: 语法格式:pandas.read_csv(文件路径) CSV文件内容如下:import pandas as pd file_path = "e:\\panda
2022-06-02

数据分析之Pandas VS SQL!

编辑:zone来源:数据管道作者:艾德宝器AbstractPandas是一个开源的Python数据分析库,结合 NumPy 和 Matplotlib 类库,可以在内存中进行高性能的数据清洗、转换、分析及可视化工作。对于数据开发工程师或分析师
2023-06-02

Python数据分析库之pandas,你

写这个系列背后的故事咦,面试系列的把基础部分都写完啦,哈哈答,接下来要弄啥嘞~pandas吧外国人开发的翻译成汉语叫 熊猫厉害厉害,很接地气一个基于numpy的库干啥的?做数据分析用的而数据分析是python体系下一个非常庞大的分支厉害到,
2023-01-31

SQL数据分析之子查询

子查询用于为主查询返回其所需数据,或者对检索数据进行进一步的限制,通常将一个查询(子查询)的结果作为另一个查询(主查询)的数据来源或判断条件,常见的子查询有WHERE子查询,HAVING子查询,FROM子查询,SELECT子查询,EXIST

九大数据分析方法之标签分析法

今天继续介绍九大数据分析方法系列。上一篇我们提到,如果想找两个指标之间相关关系,可以用相关分析法。但很多时候,我们想找的关系,不能用指标来表达。

业务数据分析方法之对比分析法

下面介绍几种常见又比较通用的数据分析方法,希望这些分析方法能够成为你进行数据分析和解决业务问题的利器。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录