我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python算法应用实战之队列详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python算法应用实战之队列详解

队列(queue)

队列是先进先出(FIFO, First-In-First-Out)的线性表,在具体应用中通常用链表或者数组来实现,队列只允许在后端(称为rear)进行插入操作,在前端(称为front)进行删除操作,队列的操作方式和堆栈类似,唯一的区别在于队列只允许新数据在后端进行添加(摘录维基百科)。

如图所示

查看图片

队列的接口

一个队列至少需要如下接口:

接口 描述 add(x) 入队 delete() 出队 clear() 清空队列 isEmpty() 判断队列是否为空 isFull() 判断队列是否未满 length() 队列的当前长度 capability() 队列的容量

然而在Python中,可以使用collections模块下的deque函数,deque函数提供了队列所有的接口,那么先让我门看看队列deque函数提供了那些API把:

collections.deque是双端队列,即左右两边都是可进可出的

方法 描述 append(x) 在队列的右边添加一个元素 appendleft(x) 在队列的左边添加一个元素 clear() 从队列中删除所有元素 copy() 返回一个浅拷贝的副本 count(value) 返回值在队列中出现的次数 extend([x..]) 使用可迭代的元素扩展队列的右侧 extendleft([x..]) 使用可迭代的元素扩展队列的右侧 index(value, [start, [stop]]) 返回值的第一个索引,如果值不存在,则引发ValueError。 insert(index, object) 在索引之前插入对象 maxlen 获取队列的最大长度 pop() 删除并返回最右侧的元素 popleft() 删除并返回最左侧的元素 remove(value) 删除查找到的第一个值 reverse() 队列中的所有元素进行翻转 rotate() 向右旋转队列n步(默认n = 1),如果n为负,向左旋转。

现在我们在Python中测试下这些个API的使用吧。

入队操作


>>> from collections import deque
# 创建一个队列
>>> q = deque([1])
>>> q
deque([1])
# 往队列中添加一个元素
>>> q.append(2)
>>> q
deque([1, 2])
# 往队列最左边添加一个元素
>>> q.appendleft(3)
>>> q
deque([3, 1, 2])
# 同时入队多个元素
>>> q.extend([4,5,6])
>>> q
deque([3, 1, 2, 4, 5, 6])
# 在最左边同时入队多个元素
>>> q.extendleft([7,8,9])
>>> q
deque([9, 8, 7, 3, 1, 2, 4, 5, 6])

出队操作


# 删除队列中最后一个
>>> q.pop()
6
>>> q
deque([9, 8, 7, 3, 1, 2, 4, 5])
# 删除队列中最左边的一个元素
>>> q.popleft()
9
>>> q
deque([8, 7, 3, 1, 2, 4, 5])

其他的API


# 清空队列
>>> q
deque([8, 7, 3, 1, 2, 4, 5])
>>> q.clear()
>>> q
deque([])
# 判断队列是否为空
>>> not q
True
# 获取队列最大长度
>>> q = deque([1,2], 10)
>>> q.maxlen
10
# 查看某个元素出现的次数
>>> q.extend([1,2,1,1])
>>> q.count(1)
4
# 查看当前队列长度
>>> len(q)
6
# 判断队列是否满了
>>> q.maxlen == len(q)
False
# 队列元素反转
>>> q = deque([1,2,3,4,5],5)
>>> q.reverse()
>>> q
deque([5, 4, 3, 2, 1], maxlen=5)
# 查看元素对应的索引
>>> q.index(1)
4
# 删除匹配到的第一个元素
>>> q
deque([5, 4, 3, 2, 1], maxlen=5)
>>> q.remove(5)
>>> q
deque([4, 3, 2, 1], maxlen=5)
# 元素位置进行旋转
>>> q
deque([4, 3, 2, 1], maxlen=5)
>>> q.rotate(2)
>>> q
deque([2, 1, 4, 3], maxlen=5)
>>> q.rotate(1)
>>> q
deque([3, 2, 1, 4], maxlen=5)
# 使用负数
>>> q.rotate(-1)
>>> q
deque([2, 1, 4, 3], maxlen=5)

实例

二项式系数

题目

编写程序,求二项式系数表中(杨辉三角)第K层系列数


 1
 1 1
 1 2 1
1 3 3 1
......

思路

把第K行的系数存储在队列中
依次出队K层的系数(每行最后一个1不出队),并推算K+1层系数,添加到队尾,最后在队尾添加一个1,便变成了k+1行。

解决代码


#!/use/bin/env python
# _*_ coding:utf-8 _*_
from collections import deque
def yanghui(k):
 """
 :param k: 杨辉三角中第几层
 :return: 第K层的系数
 """
 q = deque([1]) # 创建一个队列,默认从1开始
 for i in range(k): # 迭代要查找的层数
 for _ in range(i): # 循环需要出队多少次
  q.append(q.popleft() + q[0]) # 第一个数加上队列中第二个数并赋值到队列末尾
 q.append(1) # 每次查找结束后都需要在队列最右边添加个1
 return list(q)
result = yanghui(3)
print(result)

划分无冲突子集

题目

某动物园搬家,要运走N种动物,老虎与狮子放在一起会大家,大象与犀牛放在一个笼子会打架,野猪和野狗放在一个笼子里会打架,现在需要我们设计一个算法,使得装进同一个笼子的动物互相不打架。

思路

把所有动物按次序入队 创建一个笼子(集合),出队一个动物,如果和笼子内动物无冲冲突则添加到该笼子,有冲突则添加到队尾,等待进入新笼子 由于队列先进先出的特性,如果当前出队动物的index不大于前一个出队动物的index,说明当前队列中所有动物已经尝试过进入且进入不了当前笼子,此时创建信的笼子(集合)

解决代码


#!/use/bin/env python
# _*_ coding:utf-8 _*_
from collections import deque
def division(m, n):
 """
 :param m: 冲突关系矩阵
 :param n: 几种动物
 :return: 返回一个栈,栈内包含了所有的笼子
 """
 res = [] # 创建一个栈
 q = deque(range(n)) # 初始化队列,里面放着动物的序号
 pre = n # 前一个动物的下标
 while q:
 cur = q.popleft() # 从队头出队一个动物
 if pre >= cur: # 是否需要创建笼子
  res.append([]) # 创建一个笼子
 # 当前的动物是否与笼子内的动物有冲突
 for a in res[-1]: # 迭代栈中最顶层的笼子
  if m[cur][a]: # 有冲突
  q.append(cur) # 重新放入队列的尾部
  break
 else: # 当前动物和当前笼子中的所有动物没冲突
  res[-1].append(cur) # 当前动物放入最上面的笼子中
 pre = cur # 当前变成之前的
 return res
N = 9
R = { # 冲突对应关系表
 (1, 4), (4, 8), (1, 8), (1, 7),
 (8, 3), (1, 0), (0, 5), (1, 5),
 (3, 4), (5, 6), (5, 2), (6, 2), (6, 4),
}
M = [[0] * N for _ in range(N)] # 冲洗关系矩阵M,0代表不冲突
for i, j in R:
 M[i][j] = M[j][i] = 1 # 1代表冲突
result = division(M, N)
print(result)

数字变换

题目

对于一对正整数a,b,对a只能进行加1,减1,乘2操作,问最少对a进行几次操作能得到b?

例如:

a=3,b=11: 可以通过322-1,3次操作得到11; a=5,b=8:可以通过(5-1)*2,2次操作得到8;

思路

本题用广度优先搜索,寻找a到b状态迁移最短路径,对于每个状态s,可以转换到撞到s+1,s-1,s*2:

把初始化状态a入队; 出队一个状态s,然后s+1,s-1,s*2入队; 反复循环第二步骤,直到状态s为b;

解决代码


#!/use/bin/env python
# _*_ coding:utf-8 _*_
from collections import deque
def atob(a, b):
 """
 :param a: 开始的数字
 :param b: 最终转换之后的数字
 :return: 最小匹配的次数
 """
 q = deque([(a, 0)]) # a=当前数字,0=操作的次数
 checked = {a} # 已经检查过的数据
 while True:
 s, c = q.popleft()
 if s == b:
  break
 if s < b: # 要计算的数小于计算之后的数字
  if s + 1 not in checked: # 如果要计算的数字+1不在已检查过的数据集合中
  q.append((s + 1, c + 1)) # 要计算的数+1,转换次数+1
  checked.add(s + 1) # 把计算过的数添加到checked集合中
  if s * 2 not in checked:
  q.append((s * 2, c + 1))
  checked.add(s * 2)
 if s > 0: # 要计算的数大于0
  if s - 1 not in checked:
  q.append((s - 1, c + 1))
  checked.add(s - 1)
 return q.popleft()[-1]
result = atob(3, 11)
print(result)

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python算法应用实战之队列详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python算法应用实战之队列详解

队列(queue) 队列是先进先出(FIFO, First-In-First-Out)的线性表,在具体应用中通常用链表或者数组来实现,队列只允许在后端(称为rear)进行插入操作,在前端(称为front)进行删除操作,队列的操作方式和堆栈类
2022-06-04

Python算法应用实战之栈详解

栈(stack) 栈又称之为堆栈是一个特殊的有序表,其插入和删除操作都在栈顶进行操作,并且按照先进后出,后进先出的规则进行运作。 如下图所示例如枪的弹匣,第一颗放进弹匣的子弹反而在发射出去的时候是最后一个,而最后放入弹匣的一颗子弹在打出去的
2022-06-04

C语言数据结构与算法之队列的实现详解

队列只允许在一端进行插入数据操作,在另一端进行删除数据操作的特殊线性表,队列具有先进先出FIFO(FirstInFirstOut)的原则。本文将通过实例详细说说队列的实现,需要的可以学习一下
2022-11-13

Java  队列 Queue 用法实例详解

队列是一种特殊的线性表,它只允许在表的前端进行删除操作,而在表的后端进行插入操作。LinkedList类实现了Queue接口,因此我们可以把LinkedList当成Queue来用。以下实例演示了队列(Queue)的用法:/* author
2023-05-31

Python实现优先级队列结构的方法详解

最简单的实现 一个队列至少满足2个方法,put和get. 借助最小堆来实现. 这里按"值越大优先级越高"的顺序.#coding=utf-8 from heapq import heappush, heappop class Priori
2022-06-04

GoJava算法之外观数列实现方法示例详解

这篇文章主要为大家介绍了GoJava算法外观数列实现的方法示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

详解非极大值抑制算法之Python实现

目录一、概述二、NMS 在目标检测中的应用2.1、人脸检测框重叠例子2.2、目标检测 pipline三、NMS 原理3.1、重叠率(重叠区域面积比例IOU)阈值3.2、代码示例四、NMS loss五、Soft-NMS5.1、python代码
2022-06-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录