我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas统计计数value_counts()的使用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas统计计数value_counts()的使用

value_counts()方法返回一个序列Series,该序列包含每个值的数量(对于数据框中的任何列,value_counts()方法会返回该列每个项的计数)

value_counts()是Series拥有的方法,一般在DataFrame中使用时,需要指定对哪一列进行使用

语法

value_counts(values,
             sort=True, 
             ascending=False,
             normalize=False,
             bins=None,
             dropna=True)

参数说明

  • sort: 是否要进行排序(默认进行排序,取值为True)
  • ascending: 默认降序排序(取值为False),升序排序取值为True
  • normalize: 是否要对计算结果进行标准化,并且显示标准化后的结果,默认是False
  • bins: 可以自定义分组区间,默认是否
  • dropna: 是否包括对NaN进行计数,默认不包括
import pandas as pd
import numpy as np
 
df = pd.DataFrame({'City': ['北京', '广州', '深圳', '上海', '大连', '成都', '深圳', '厦门', '北京', '北京', '上海', '珠海'],
                   'Revenue': [10000, 10000, 5000, 5000, 40000, 50000, 8000, 5000, 5000, 5000, 10000, 12000],
                   'Age': [50, 43, 34, 40, 25, 25, 45, 32, 25, 25, 34, np.nan]})
 
# 1.查看'City'这一列的计数结果(对给定列里面的每个值进行计数并进行降序排序,缺失值nan也会被排除)
# value_counts()并不是未带任何参数,而是所有参数都是默认的
res1 = df['City'].value_counts()
 
# 2.查看'Revenue'这一列的计数结果(采用升序的方式)
res2 = df['Revenue'].value_counts(ascending=True)
 
# 3.查看'Age'这一列的计数占比(使用标准化normalize=True)
res3 = df['Age'].value_counts(ascending=True,normalize=True)
 
# 4.查看'Age'这一列的计数结果(展示NaN值的计数)
res4 = df['Age'].value_counts(dropna=False)
 
# 5.查看'Age'这一列的计数结果(不展示NaN值的计数)
# res5 = df['Age'].value_counts()
res5 = df['Age'].value_counts(dropna=True)

df

res1

res2

res3 

res4 

res5 

 到此这篇关于Pandas统计计数value_counts()的使用的文章就介绍到这了,更多相关Pandas统计计数value_counts()内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas统计计数value_counts()的使用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

pandas中的数值计算及统计基础

1 import pandas as pd 2 import numpy as np 3 4 df = pd.DataFrame({ 5 'key1': [4, 5, 3, np.nan, 2], 6 'key2
2023-01-31

第十一节:pandas统计函数

1、pct_change()计算增长比例2、cov()协方差3、corr()相关系数4、rank()数据排名5、numpy聚合函数
2023-01-30

如何在pandas中统计重复值的次数

本篇文章为大家展示了如何在pandas中统计重复值的次数,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。具体如下:from pandas import DataFramedf = DataFrame(
2023-06-06

Python Pandas模块实现数据的统计分析的方法

一、groupby函数 Python中的groupby函数,它主要的作用是进行数据的分组以及分组之后的组内的运算,也可以用来探索各组之间的关系,首先我们导入我们需要用到的模块import pandas as pd首先导入我们所需要用到的数据
2022-06-02

使用Pandas怎么实现一个分组计数功能

这篇文章将为大家详细讲解有关使用Pandas怎么实现一个分组计数功能,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。在对dataframe进行分析的时候会遇到需要分组计数,计数的column中
2023-06-14

怎么统计Webpack组件的使用次数

怎么统计Webpack组件的使用次数?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。用的 @material-ui,下面是组件使用情况实现我们知道 loader
2023-06-07

linux中怎么使用grep统计个数

在Linux中,你可以使用`grep`命令结合`wc`命令来统计匹配到的行数。具体的命令格式如下:```shellgrep -c "要匹配的模式" 文件名```例如,假设你要统计一个文件中包含字符串"hello"的行数,你可以使用以下命令:
2023-08-28

Pandas中怎么按日期筛选、显示及统计数据

小编给大家分享一下Pandas中怎么按日期筛选、显示及统计数据,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!运行环境为 windows系统,64位,python3
2023-06-04

MySql统计函数COUNT的具体使用详解

目录1. COUNT()函数概述2. COUNT()参数说明3. COUNT()判断存在4. COUNT()阿里开发规范1. COUNT()函数概述COUNT() 是一个聚合函数,返回指定匹配条件的行数。开发中常用来统计表中数据,全部数据
2022-08-14

使用Python统计端口TCP连接数

此脚本可以用来统计某个端口上连接的IP的数量,统计连接到这一端口的所有IP、最多的IP和次数以及TCP连接状态。    涉及到Python读取网络连接统计信息以及统计计算的一些基本操作。在编写脚本的过程中预先定义了统计信息的数据结构,在向最
2023-01-31

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录