我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数据分析——pyecharts

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数据分析——pyecharts

导入类库

1 from pyecharts import Pie, Bar, Gauge, EffectScatter, WordCloud, Map, Grid, Line, Timeline
2 import random

make_point:标注,类似于matplotlib的text

is_stack:堆叠,将同一图表中的不同图像堆叠显示

is_label_show:显示每个数据的标注

is_datazoom_show:数据缩放显示

地图

1 value = [120, 110]
2 attr = [u'河南', u'浙江']
3 map = Map(u'Map 结合 VisualMap 示例', width=1200, height=600)
4 map.use_theme('dark')
5 map.add('', attr, value, maptype=u'china', is_visualmap=True, visual_text_color='#000')
6 map.render('map.html')

堆叠柱状图

1 attr = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高跟鞋', '袜子']
2 v1 = [5, 20, 36, 10, 75, 90]
3 v2 = [10, 25, 8, 60, 20, 80]
4 bar = Bar('柱状图数据堆叠示例')
5 bar.add('商家A', attr, v1, mark_point=['average'], is_stack=True)
6 bar.add('商家B', attr, v2, mark_point=['min', 'max'], is_stack=True)
7 bar.render('bar.html')

收缩柱状图

1 attr = ['{}天'.format(i) for i in range(30)]
2 v1 = [random.randint(1, 30) for _ in range(30)]
3 bar = Bar('Bar - datazoom - slider示例')
4 bar.use_theme('dark')
5 bar.add('', attr, v1, is_label_show=True, is_datazoom_show=True, is_more_utils=True)
6 bar.render('bar_slider.html')
7 # 上面可以通过下面一句链式调用
8 # (Bar().add().add().render())

仪表盘

1 gauge = Gauge('仪表盘示例')
2 gauge.add('业务指标', '完成率', 66.66)
3 gauge.render('gauge.html')

散点图

1 v1 = [10, 20, 30, 40, 50, 60]
2 v2 = [25, 20, 15, 10, 60, 33]
3 es = EffectScatter('动态散点图示例')
4 es.add('effectScatter', v1, v2)
5 es.render('effectScatter.html')

词云

1 name = [u'网络', u'数据分析.txt', u'hadoop', u'flask']
2 value = [10000, 6000, 4000, 3000]
3 wd = WordCloud(width=1300, height=620)
4 wd.add('', name, value, word_size_range=(20, 100))
5 wd.render('wordcloud.html')

饼图

1 attr = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高 跟鞋', '袜子']
2 v1 = [11, 12, 13, 10, 10, 10]
3 pie = Pie('饼图示例')
4 # pie.use_theme('dark')
5 pie.add('服装', attr, v1, is_label_show=True)
6 pie.render('pie.html')

网格容器

 1 attr = ['衬衫', '羊毛衫', '雪纺衫', '裤子', '高 跟鞋', '袜子']
 2 v1 = [5, 20, 36, 10, 75, 90]
 3 v2 = [10, 25, 8, 60, 20, 80]
 4 bar = Bar('柱状图示例', height=720)
 5 bar.add('商家A', attr, v1, is_stack=True)
 6 bar.add('商家B', attr, v2, is_stack=True)
 7 line = Line('折线图示例', title_top='50%')
 8 attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
 9 line.add('最高气温',
10          attr,
11          [11, 11, 15, 13, 12, 13, 10],
12          mark_point=['max', 'min'],
13          mark_line=['average'],
14          )
15 line.add('最低气温',
16          attr,
17          [1, -2, 2, 5, 3, 2, 0],
18          mark_point=['max', 'min'],
19          mark_line=['average'],
20          legend_top='50%'
21          )
22 grid = Grid()
23 grid.add(bar, grid_bottom='60%')
24 grid.add(line, grid_top='60%')
25 grid.render('grid.html')

时间线

 1 attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
 2 pie_1 = Pie("2012 年销量比例", "数据纯属虚构")
 3 pie_1.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
 4           is_label_show=True, radius=[30, 55], rosetype='radius')
 5 
 6 pie_2 = Pie("2013 年销量比例", "数据纯属虚构")
 7 pie_2.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
 8           is_label_show=True, radius=[30, 55], rosetype='radius')
 9 
10 pie_3 = Pie("2014 年销量比例", "数据纯属虚构")
11 pie_3.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
12           is_label_show=True, radius=[30, 55], rosetype='radius')
13 
14 pie_4 = Pie("2015 年销量比例", "数据纯属虚构")
15 pie_4.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
16           is_label_show=True, radius=[30, 55], rosetype='radius')
17 
18 pie_5 = Pie("2016 年销量比例", "数据纯属虚构")
19 pie_5.add("秋季", attr, [random.randint(10, 100) for _ in range(6)],
20           is_label_show=True, radius=[30, 55], rosetype='radius')
21 
22 timeline = Timeline(is_auto_play=True, timeline_bottom=0)
23 timeline.use_theme('dark')
24 timeline.add(pie_1, '2012 年')
25 timeline.add(pie_2, '2013 年')
26 timeline.add(pie_3, '2014 年')
27 timeline.add(pie_4, '2015 年')
28 timeline.add(pie_5, '2016 年')
29 timeline.render('timeline.html')

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数据分析——pyecharts

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

数据分析——pyecharts

导入类库1 from pyecharts import Pie, Bar, Gauge, EffectScatter, WordCloud, Map, Grid, Line, Timeline2 import randommake_poin
2023-01-30

数据可视化之pyecharts

pyechats是一个用于数据可视化的包。Echats是百度开源的一个数据可视化js库,主要用于数据可视化,pyecharts 是一个用于生成Echarts图标的类库,实际上就是Echarts和Python的对接。pyecharts支持py
2023-01-30

数据分析

是利用数据提取见解和发现趋势的过程。它在各种行业中至关重要,可以推动数据驱动的决策和提高效率。本文将探讨的基础知识,包括数据收集、处理、分析和可视化。
数据分析
2024-03-04

Python 数据可视化神器—Pyecharts

能否在 Python 中也能用到 Echarts 的功能呢?寻找中惊喜地发现了 pyecharts,只需在python中安装该模块即可使用。

数据分析-python

数据分析参考python数据分析与挖掘实战-张良均著数据探索数据质量分析缺失值分析异常值分析一致性分析利用箱线图检验异常值,可以看出数据的分布范围大致情况,和1/4值、1/2值、3/4值得情况。代码:# -*- coding: utf-8 -*-import
数据分析-python
2021-04-03

数据分析——matplotlib

基础 1 # coding=utf-8 2 import matplotlib.pyplot as pt 3 import numpy as np 4 from matplotlib import font_manager # 字体管理
2023-01-30

数据分析应该分析什么?

  欢迎各位阅读本篇,数据分析是指用适当的统计方法对收集来的大量第一手资料和第二手资料进行分析,以求最大化地开发数据资料的功能,发挥数据的作用。本篇文章讲述了数据分析应该分析什么?  很多时候我们走的走的就会忘记当初为什么而出发。  我们有的时候在拿到数据以后不知道该怎么进行分析,该去分析什么,其实这些在我们以前的统计
数据分析应该分析什么?
2024-04-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录