我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python实现计算最小编辑距离

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python实现计算最小编辑距离

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最小步骤。从Google图片借来的图,

查看图片

Python代码实现, (其中要注意矩阵的下标从1开始,而字符串的下标从0开始):


 def normal_leven(str1, str2):
   len_str1 = len(str1) + 1
   len_str2 = len(str2) + 1
   #create matrix
   matrix = [0 for n in range(len_str1 * len_str2)]
   #init x axis
   for i in range(len_str1):
     matrix[i] = i
   #init y axis
   for j in range(0, len(matrix), len_str1):
     if j % len_str1 == 0:
       matrix[j] = j // len_str1

   for i in range(1, len_str1):
     for j in range(1, len_str2):
       if str1[i-1] == str2[j-1]:
         cost = 0
       else:
         cost = 1
       matrix[j*len_str1+i] = min(matrix[(j-1)*len_str1+i]+1,
                     matrix[j*len_str1+(i-1)]+1,
                     matrix[(j-1)*len_str1+(i-1)] + cost)

   return matrix[-1]

最近看文章看到Python库提供了一个包difflib实现了从对象A转化对象B的步骤,那么计算最小编辑距离的代码也可以这样写了:


 def difflib_leven(str1, str2):
  leven_cost = 0
  s = difflib.SequenceMatcher(None, str1, str2)
  for tag, i1, i2, j1, j2 in s.get_opcodes():
    #print('{:7} a[{}: {}] --> b[{}: {}] {} --> {}'.format(tag, i1, i2, j1, j2, str1[i1: i2], str2[j1: j2]))

    if tag == 'replace':
      leven_cost += max(i2-i1, j2-j1)
    elif tag == 'insert':
      leven_cost += (j2-j1)
    elif tag == 'delete':
      leven_cost += (i2-i1)
  return leven_cost

代码地址

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python实现计算最小编辑距离

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python实现计算最小编辑距离

最小编辑距离或莱文斯坦距离(Levenshtein),指由字符串A转化为字符串B的最小编辑次数。允许的编辑操作有:删除,插入,替换。具体内容可参见:维基百科—莱文斯坦距离。一般代码实现的方式都是通过动态规划算法,找出从A转化为B的每一步的最
2022-06-04

Python文本相似性计算之编辑距离详解

编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的
2022-06-04

怎么用C++实现编辑距离

这篇文章主要讲解了“怎么用C++实现编辑距离”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么用C++实现编辑距离”吧!Edit Distance 编辑距离Given two words w
2023-06-20

Python如何实现距离和相似性计算

本篇内容主要讲解“Python如何实现距离和相似性计算”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python如何实现距离和相似性计算”吧!欧氏距离也称欧几里得距离,是指在m维空间中两个点之间
2023-07-05

Java如何计算两个字符串之间的编辑距离

Java中计算两个字符串之间的编辑距离(莱文斯坦距离)是一个测量字符串相似性的重要指标。莱文斯坦距离算法基于动态规划,通过存储编辑操作次数,计算将一个字符串转换为另一个字符串所需的最小操作次数。该算法在自然语言处理、拼写检查和模糊搜索等应用中广泛使用。
Java如何计算两个字符串之间的编辑距离
2024-04-02

PHP如何计算两个字符串之间的编辑距离

编辑距离衡量字符串相似度,计算转换一个字符串到另一个所需的最小编辑操作数(插入、删除、替换)。PHP中可使用levenshtein()函数计算编辑距离,similar_text()函数计算相似度百分比,StringDiff对象生成差异报告。优化计算可限制编辑操作数、使用滚动数组、或使用位图。编辑距离应用包括拼写检查、文本差异、信息检索和机器翻译。
PHP如何计算两个字符串之间的编辑距离
2024-04-02

Python机器学习中实现距离和相似性计算详解

这篇文章主要为大家详细介绍了Python机器学习中实现距离和相似性计算的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-03-08

Python如何实现杰卡德距离以及环比算法

这篇文章将为大家详细讲解有关Python如何实现杰卡德距离以及环比算法,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。前言NLP-字符串相似性计算、集合相似性度量杰卡德距离是什么?杰卡德距离(Jaccard
2023-06-29

【算法——Python实现】最大堆和最小

# _*_ encoding:utf-8 _*_"""最大堆"""class MaxHeap(object): # def __init__(self): # self.data = [] # 创建堆 # sel
2023-01-31

python怎么实现计算器小功能

python怎么实现计算器小功能,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。1. 案例介绍本例利用 Python 开发一个可以进行简单的四则运算的图形化计算器,会用到 T
2023-06-26

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录