我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pandas常用的数据结构和常用的数据分析技术

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pandas常用的数据结构和常用的数据分析技术

Pandas是一个强大的数据处理库,它提供了高性能、易于使用的数据结构和数据分析工具。本文将介绍Pandas常用的数据结构和常用的数据分析技术,包括DataFrame的应用、窗口计算、相关性判定、Index的应用、范围索引、分类索引、多级索引以及日期时间索引。

DataFrame的应用

DataFrame是Pandas最常用的数据结构之一,它类似于Excel表格,能够存储二维数据并提供了强大的数据分析能力。我们可以通过Pandas读取Excel、CSV等格式的文件,并将其转换为DataFrame。

import pandas as pd
# 读取Excel文件
df = pd.read_excel('data.xlsx')
# 读取CSV文件
df = pd.read_csv('data.csv')

一旦我们获得了DataFrame,就可以对其进行各种操作。例如,我们可以使用head()函数查看前几行数据。

df.head()

除此之外,还可以使用describe()函数查看数据的基本统计信息。

df.describe()

窗口计算

Pandas可以对数据进行窗口计算,例如计算移动平均值、移动标准差等。这些计算对于时间序列数据分析非常有用。

# 计算每个数据点的5天移动平均值
df['MA5'] = df['Close'].rolling(window=5).mean()
# 计算每个数据点的10天移动标准差
df['STD10'] = df['Close'].rolling(window=10).std()

相关性判定

Pandas可以计算数据之间的相关性,例如Pearson相关系数、Spearman秩相关系数等。

# 计算Close和Volume的Pearson相关系数
df['Close'].corr(df['Volume'], method='pearson')
# 计算Close和Volume的Spearman秩相关系数
df['Close'].corr(df['Volume'], method='spearman')

Index的应用

Index是Pandas的另一个重要数据结构,它类似于数据库中的索引。Index可以用于数据的查找、切片、排序等操作。

# 将日期作为Index
df.set_index('Date', inplace=True)
# 查找2019年的数据
df.loc['2019']
# 查找2019年1月的数据
df.loc['2019-01']

范围索引

范围索引是指通过指定范围来筛选数据。Pandas提供了between()函数来实现范围索引。

# 筛选Close在30到50之间的数据
df[df['Close'].between(30, 50)]

分类索引

分类索引是指通过指定分类来筛选数据。Pandas提供了isin()函数来实现分类索引。

# 筛选Symbol为AAPL或MSFT的数据
df[df['Symbol'].isin(['AAPL', 'MSFT'])]

多级索引

多级索引是Pandas的高级功能之一,它可以将数据按照多个维度进行分组,从而更方便地进行数据分析。

# 使用Symbol和Date作为多级索引
df.set_index(['Symbol', 'Date'], inplace=True)
# 查找AAPL在2019年的数据
df.loc['AAPL', '2019']
# 计算每个Symbol在每天的平均Close
df.groupby('Symbol')['Close'].mean()

日期时间索引

日期时间索引是Pandas用于处理时间序列数据的重要功能,它可以方便地进行时间相关的数据分析。

# 将日期时间转换为DatetimeIndex
df['Date'] = pd.to_datetime(df['Date'])
df.set_index('Date', inplace=True)
# 计算每个月的平均Close
df.resample('M')['Close'].mean()

除了以上介绍的常用技术,Pandas还有许多其他强大的功能。下面将进一步介绍Pandas的一些高级应用。

分组聚合

分组聚合是Pandas的一项重要功能,它可以将数据按照指定的列进行分组,并对每个分组进行聚合操作。例如,我们可以根据Symbol列将数据分组,并计算每个Symbol的平均Close和最大Volume。

# 根据Symbol分组,计算平均Close和最大Volume
df.groupby('Symbol').agg({'Close': 'mean', 'Volume': 'max'})

数据透视表

数据透视表是一种将数据按照多个维度进行聚合的方法,它可以方便地进行数据分析。Pandas提供了pivot_table()函数来实现数据透视表。

# 按照Symbol和Year计算每年的平均Close
df.pivot_table(index='Year', columns='Symbol', values='Close', aggfunc='mean')

数据合并

数据合并是将多个数据集合并成一个数据集的过程,它可以方便地进行数据分析。Pandas提供了merge()函数来实现数据合并。

# 合并df1和df2
pd.merge(df1, df2, on='key')

数据清洗

数据清洗是数据分析的重要步骤,它可以去除重复数据、处理缺失值、处理异常值等。Pandas提供了一系列函数来实现数据清洗。

# 去除重复数据
df.drop_duplicates()
# 处理缺失值
df.dropna()
# 处理异常值
df[df['Close'] > 100]

数据可视化

数据可视化是数据分析的重要手段,它可以将数据转换为图表的形式,帮助我们更好地理解数据。Pandas提供了一系列函数来实现数据可视化。

# 绘制折线图
df.plot()
# 绘制散点图
df.plot.scatter(x='Close', y='Volume')
# 绘制直方图
df['Close'].plot.hist()

以上是Pandas的一些常用应用和高级功能,希望能对大家有所帮助。

到此这篇关于Pandas常用的数据结构和常用的数据分析技术的文章就介绍到这了,更多相关Pandas数据结构和分析内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pandas常用的数据结构和常用的数据分析技术

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Pandas常用的数据结构和常用的数据分析技术

Pandas是Python中用于数据处理和分析的强大库,其最常用的数据结构是Series和DataFrame。Series类似于一维数组,可以表示一列数据;DataFrame类似于二维表格,可以表示多列数据
2023-05-18

Pandas数据操作及数据分析常用技术介绍

Pandas是Python中用于数据处理和数据分析的库,具有强大的数据操作和分析功能,包括数据清洗、转换、筛选、聚合等。常用技术有数据读取与写入、数据索引、数据切片、数据合并、数据透视表、数据可视化等,适用于各种数据分析和机器学习任务
2023-05-18

Pandas数据分析常用函数的使用

本文主要介绍了Pandas数据分析常用函数的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-16

Pandas数据分析常用函数如何使用

本篇内容介绍了“Pandas数据分析常用函数如何使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!Pandas是数据处理和分析过程中常用的P
2023-07-05

pandas数据分析常用函数有哪些

小编给大家分享一下pandas数据分析常用函数有哪些,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1. 导入模块import pandas as pd
2023-06-01

Python Pandas数据结构的示例分析

这篇文章将为大家详细讲解有关Python Pandas数据结构的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1 Pandas介绍2008年WesMcKinney开发出的库专门用于数据挖掘的开源p
2023-06-29

Redis常用数据结构介绍和业务应用场景分析

redis内置了很多常用数据结构,了解这些数据结构的功能和应用场景能够让我们在需求开发时灵活运用来解决实际问题。

Python Pandas中的数据结构实例分析

今天小编给大家分享一下Python Pandas中的数据结构实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。前言:Pa
2023-07-02

web常用数据结构及复杂度实例分析

这篇文章主要介绍“web常用数据结构及复杂度实例分析”,在日常操作中,相信很多人在web常用数据结构及复杂度实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”web常用数据结构及复杂度实例分析”的疑惑有所
2023-06-17

常用的数据分析方法

常用的数据分析方法有:1、对比分析法;2、分组分析法;3、结构分析法;4、留存分析法;5、交叉分析法;6、漏斗分析法;7、矩阵分析法;8、象限分析法;9、趋势分析法;10、指标分析法;11、综合评价分析法。其中“对比分析法”是对数据进行比较
2023-07-10

12个常用的图像数据增强技术总结

机器学习或深度学习模型的训练的目标是成为“通用”模型。这就需要模型没有过度拟合训练数据集,或者换句话说,我们的模型对看不见的数据有很好的了解。数据增强也是避免过度拟合的众多方法之一。

Python中的常用数据结构有哪些?

Python是一种高级编程语言,广泛应用于数据分析、机器学习、Web开发等领域。在Python中,有许多常用的数据结构,用于存储和处理数据。本文将介绍几种常见的数据结构,并提供相应的代码示例。列表(List):列表是Python中最常用的数
2023-10-22

Python的字符串和常用数据结构有哪些

本篇内容介绍了“Python的字符串和常用数据结构有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!使用字符串第二次世界大战促使了现代电子
2023-06-01

java常用数据结构是什么

这篇文章将为大家详细讲解有关java常用数据结构是什么,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。java数据结构有:1、数组;2、链表,一种递归的数据结构;3、栈,按照“后进先出”、“先进后出”的原则
2023-06-14

Redis 的基本特性和 5 个常用数据结构

[TOC]1. 基本特性速度快基于 C 语言开发,源码短小精悍数据存在内存中单线程(高性能)支持数据持久化,异步保存到磁盘丰富的数据结构(key-value):string、list、hash、set、zset多语言客户端功能丰富:发布订阅;Lua 脚本;等简
Redis 的基本特性和 5 个常用数据结构
2019-02-26

Python常用数据结构有哪些

本篇内容介绍了“Python常用数据结构有哪些”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!Python 常用数据结构学习目的这个专题,尽量
2023-06-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录