我的编程空间,编程开发者的网络收藏夹
学习永远不晚

常用的数据分析方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

常用的数据分析方法

常用的数据分析方法有:1、对比分析法;2、分组分析法;3、结构分析法;4、留存分析法;5、交叉分析法;6、漏斗分析法;7、矩阵分析法;8、象限分析法;9、趋势分析法;10、指标分析法;11、综合评价分析法。其中“对比分析法”是对数据进行比较以分析数据间的差异,包括静态比较和动态比较。

常用的数据分析方法

对比分析法

即比较分析法,对数据进行比较以分析数据间的差异,包括静态比较和动态比较。静态比较又称横向对比,在同一时间下对不同指标进行的对比;动态比较也称纵向对比,是在同一总体条件下对不同时期指标数值进行的比较。目的是揭示数据代表的事物的发展变化和规律性。

横向对比:横向对比就是跟自己比。最常见的数据指标就是需要跟目标值比,来回答我们有没有完成目标;跟我们上个月比,来回答我们环北增长了多少。

纵向对比:简单来说就是跟他人比。我们要跟竞争对手比,来回答我们在市场中的份额和地位是怎样的。

分组分析法

结合对比法,把总体中不同性质的对象分开,并进行对比以便了解内在的数据关系。

结构分析法

亦称比重分析,分析总体内各组成部分占总体的比例以及构成的变化,从中掌握事物的特点和变化趋势。

留存分析法

留存分析法是一种用来分析用户参与情况和活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。从用户的角度来说,留存率越高就说明这个产品对用户的核心需求也把握的越好,转化成产品的活跃用户也会更多,最终能帮助公司。

比如,我们可以通过观察不同时间段用户留存的情况,通过对比各个渠道、活动、关键行为的用户后续留存变化,发现提升用户留存率的影响因素,例如观察领取过优惠券的用户留存率是否比没有领取优惠券的用户留存率更高。

交叉分析法

即立体分析法,常用于分析变量之间的相关关系。将不同维度数据交叉展现,进行多角度结合分析的方法。

对比分析既有横向对比,又有纵向对比。如果既想横向对比,又想纵向对比,就有了交叉分析法。交叉分析法就是对数据从多个维度进行交叉展现,进行多角度的结合分析。在分析app数据的时候,通常会分ios和安卓来看。交叉分析的主要作用就是从多个维度细分数据,从中发现最为相关的维度来探索数据变化的原因。

漏斗分析法

结合对比、分组分析法,可以比较同一环节优化前后效果、不同用户群转化率,同行类似产品的转化率。反映用户行为状态以及从起点到终点各阶段用户转化情况,常用转化率和流失率两个指标。

矩阵分析法

即矩阵关联分析法,以事物的两个重要属性为分析的依据,进行分类关联分析,为解决问题和资源分配提供参考依据。

象限分析法

依据数据的不同,将各个比较主体划分到4个象限中。如果把智商和情商进行划分,就可以划分为两个维度四个象限,每个人都有自己所属的象限。一般来说,智商保证一个人的下限,情商提升一个人的上限。

一个之前实际工作中用过的象限分析法的例子。一般p2p产品注册用户都是有第三方渠道引流的,如果按照流量来源的质量和数量可以划分四个象限,然后选取一个固定时间点,比较各个渠道的流量性价比,质量可以用留存的总额这个维度作标准。对于高质量高数量的渠道继续保持,对于高质量低数量的渠道扩大引入数量,低质量低数量pass,低质量高数量尝试一下投放的策略和要求,这样的象限分析可以让我们在对比分析的时候得到一个非常直观和快捷的结果。

趋势分析法

当数据很多,而我们又想从数据中更快、更便捷来发现数据信息的时候,这个时候需要借助图形的力量,所谓图形的力量,就是借助EXCEl或者其他画图工具把他画出来。

趋势分析一般用于核心指标的长期跟踪,比如:点击率、GMV、活跃用户数。一般做成简单的数据趋势图,但光制作成数据趋势图还不算分析,必须像上面一样,数据有那些趋势上的变化,有没有周期性,有没有拐点,并分析背后的原因,无论是内部原因还是外部原因。趋势分析最好的产出是比值。有环比、同比、定基比。比如2017年4月份比3月份GDP增长了多少,这就是环比,环比体现了最近变化的趋势,但有季节性的影响。为了消除季节性的影响,推出了同比,比如:2017年4月份比2016年的4月份GDP增长了多少,这就是同比。定基比就更好理解,就是固定某个基点,比如将2017年1月份的数据作为基点,定基比则为2017年5月份的数据和2017年1月份的数据做对比。

指标分析法

在实际工作中,当拿到一些可视化数据图表或者是Excel表格时,我们可以直接运用统计学中的一些基础指标来做数据分析,比如平均数、众数、中位数、最大值、最小值等,下面我们分别来介绍:

平均数

平均数、也叫平均分析法,是指运用计算平均数的方法来反映总体在一定时间、地点条件下某一数量特征的一般水平的分析方法。平均分析法常用指标有算术平均数、调和平均数、几何平均数、众数和中位数等,其中最为常见的是算术平均数,也就是日常所说的平均数或平均值。

平均数指标可用于对比同类现象在不同地区、不同行业、不同单位等之间的差异程度,比用总量指标对比更具说服力。除此以外,利用平均指标对比某些现象在不同历史时期的变化,也更能说明其发现趋势和规律。

众数、中位数

众数也就是数据中的一种代表数,它反应的是数据的一种集中程度。比如说最佳,最受欢迎,最满意都与众数有关。众数本质上来说,反映的是数据中发生频率最高的一些数据指标,在做数据分析时,我们可以对这些数据指标提取一些共性的特点,然后进行提炼和总结,然后得出一些改进的意见。

中位数主要是反映的是一组数据的集中趋势,像我们比较常见的正态分布,比如说我们想去统计某市的人均收入,其实,大部分的人均收入都是在一定范围之内的,只有少部分是处于最低的和最高的,其实这是中位数带来的意义。

在做数据分析时,如果各个数据之间的差异程度较小,用平均值就有较好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况,用中位数或众数有较好的代表性。

最大(小)值

最大(小)值在平时做数据分析工作时比较常见,只是我们没有特别去注意。最值是作为典型代表和异常值进行分析的,比如说销售团队里的销售冠军,电商爆款商品等。

综合评价分析法

将多个指标转化为一个能够反映综合情况的指标来进行评价,如企业经济效益评价。包括主成分分析法、数据包络分析法、模糊评价法等。

以上就是常用的数据分析方法的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

常用的数据分析方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

常用的数据分析方法

常用的数据分析方法有:1、对比分析法;2、分组分析法;3、结构分析法;4、留存分析法;5、交叉分析法;6、漏斗分析法;7、矩阵分析法;8、象限分析法;9、趋势分析法;10、指标分析法;11、综合评价分析法。其中“对比分析法”是对数据进行比较
2023-07-10

电商数据分析的常用方法有哪些

电商数据分析的常用方法有市场分析、用户行为分析、商品分析、营销策略分析、供应链分析、用户满意度分析和大数据分析等。详细介绍:1、市场分析方法,通过分析市场数据,企业可以了解目标市场的规模、增长趋势,以及竞争对手的策略;2、用户行为分析方法,
2023-08-10

数据分析的方法

数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,公式拆解法,可行域分析法,二八分析法,假设性分析法。数据分析的方法有:对比分析法,分组分析法,预测分析法,漏斗分析法,AB测试分析法,象限分析法,
2023-07-10

Python中常用探索性数据分析方法有哪些

这篇文章主要介绍了Python中常用探索性数据分析方法有哪些,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。常用探索性数据分析方法很多,比如常用的 Pandas DataFra
2023-06-25

Pandas常用的数据结构和常用的数据分析技术

Pandas是Python中用于数据处理和分析的强大库,其最常用的数据结构是Series和DataFrame。Series类似于一维数组,可以表示一列数据;DataFrame类似于二维表格,可以表示多列数据
2023-05-18

Pandas数据分析常用函数的使用

本文主要介绍了Pandas数据分析常用函数的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-16

Android解析JSON数据的方法分析

本文实例讲述了Android解析JSON数据的方法。分享给大家供大家参考,具体如下: JSON作为一种“轻量”的数据结构传递数据,在JS中有广泛的应用 Google公司对JSON的解析提供了gson.jar这个包,它不依赖于其他任何JAR包
2022-06-06

最全数据分析方法

编程学习网:相信大家都或多或少被数据分析搞得头晕眼花,本文将详细地介绍有关数据分析的五种方法,只为让读者更好的了解数据分析
最全数据分析方法
2024-04-23

numpy函数常用参数和用法的分析

解析numpy函数的常用参数与用法numpy是Python中常用的数值计算库,提供了丰富的数值运算函数和数据结构,能够方便快捷地进行数组运算和数值计算。本文将解析numpy函数的常用参数与用法,并提供具体的代码示例。一、numpy函数的
numpy函数常用参数和用法的分析
2024-01-26

阿里云数据库的分析方法提升数据分析效率的实用指南

在当今的数据驱动时代,对数据进行有效的管理和分析是非常关键的。特别是在商业领域,通过数据进行决策已经成为一种普遍趋势。然而,面对海量的数据,如何有效进行分析成为了一个难题。本文将详细介绍阿里云数据库的分析方法,帮助你提升数据分析效率。正文:一、阿里云数据库的简介阿里云数据库是中国领先的云计算服务平台,提供了一系列
阿里云数据库的分析方法提升数据分析效率的实用指南
2023-12-09

数据分析方法有哪些

数据分析方法有:1、描述性统计分析,对数据集的基本统计项进行计算和总结,来描述数据的特征和分布;2、探索性数据分析,对数据集进行初步探索,以发现数据中潜藏的模式,异常和趋势等信息;3、假设检验,使用统计方法来评估某个假设是否成立;4、回归分
2023-08-07

亚马逊数据分析方法

1.什么是亚马逊数据分析?亚马逊数据分析是指通过收集、整理和分析亚马逊平台上的数据,以便更好地了解产品销售情况、市场趋势和竞争对手情况等信息。这些数据可以帮助卖家和品牌商制定更有效的销售策略和营销计划,提高产品的销售量和盈利能力。2.亚马逊数据分析的方法2.1关键词分析关键词分析是亚马逊数据分析的重要方法之一。通过分析亚马逊平台上的搜索词和竞争对手的关键词,可以了解用户的搜索习惯和需求,
2023-10-26

python分析数据的方法是什么

Python是一种广泛使用的编程语言,可以通过多种方法来分析数据。以下是一些常见的方法:使用pandas库:pandas是一个数据处理库,可以方便地读取、处理和分析数据。你可以使用pandas来加载数据集、筛选数据、计算统计信息等。使用nu
python分析数据的方法是什么
2024-03-01

Python数据分析的方法是什么

本篇内容介绍了“Python数据分析的方法是什么”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!01 指标拆解TGI计算公式中,有三个关键点需
2023-06-16

分析Java中HashMap集合的常用方法

这篇文章主要介绍“分析Java中HashMap集合的常用方法”,在日常操作中,相信很多人在分析Java中HashMap集合的常用方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”分析Java中HashMap集
2023-06-25

Python字典的常用方法实例分析

这篇文章主要讲解了“Python字典的常用方法实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python字典的常用方法实例分析”吧!字典添加与修改方法利用 [ ] 处理看到 [] 我
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录