我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python+PuLP实现线性规划的求解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python+PuLP实现线性规划的求解

简洁是智慧的灵魂,冗长是肤浅的藻饰。——莎士比亚《哈姆雷特》

1.PuLP 库的安装

如果您使用的是 Anaconda的话(事实上我也更推荐这样做),需要先激活你想要安装的虚拟环境,之后在 Prompt 输入

pip install pulp

不出意外的话等一会就安装完毕。

2.线性规划简介

想必大家能点开这篇文章一定都知道线性规划是什么意思吧……那么我用两个例子再简单说一下。

2.1 线性规划

2.1.1 题目描述

若变量x,y 满足约束条件:

求z=3x+y 的最大值。

2.1.2 基本概念

首先,我们要认清在这道题中,x和y是可以变的,所以把它们叫做决策变量。三个不等式叫做约束条件,即x和y必须同时满足这三个不等式。我们若画出图来:

image-20220426182542100

其中不满足约束条件的区域被我标上了颜色,所以x,y 可以取得值只能在纯白区域内,这一片区域称作可行域

再看最后的我们的目标:求z=x+3y 的最大值。

于是z=x+3y 就被称作目标函数,我们的工作就是求这个目标函数的最大值。

整个问题描述为:

然后怎么算?别急我们再看一个例子。

2.2 整数规划

2.2.1 题目描述

汽车厂生产小、中、大三种类型的汽车,已知各类型每辆车对钢材、劳动时间的需求以及利润如下表所示。要求每月的钢材消耗不超过 600 t,总劳动时间不超过 60 000 h。试指定生产计划使得工厂每月的利润最大。

 小型车中型车大型车
钢材 / t1.535
劳动时间 / h280250400
利润 / 万元234

2.2.2 解题思路

首先,设三个决策变量,用x1,x2,x3 分别表示生产小型车、中型车、大型车的数量,但是注意要满足:

  • 车的数量只能是整数
  • 车的数量大于等于 0。

其他约束条件看题直接列:

最后写出目标函数

z=2x1+3x2+4x3

综合起来整个问题描述为:

另外可以看出这个题由于涉及到三个决策变量,可行域是相当抽象的,这里就不画了 hhh~

3.求解过程

首先在最前面引入所需的pulp工具库:

import pulp as pl

这句话是引入 pulp 库并简写为 pl,一个 python 库只有在开始 import 了之后才能在后面使用。这样后面凡是用到 pulp 的功能都要写成 pl.xxx

接下来是以下几个步骤:

  • 定义模型
  • 定义决策变量
  • 添加约束条件
  • 添加目标函数
  • 模型求解
  • 打印结果

3.1 定义模型

# Define the model
model = pl.LpProblem(name="My-Model", sense=pl.LpMaximize)

这个操作是使用 pl.LpProblem 创建了一个模型并赋值给变量 model,接收两个参数:

  • name:模型的名字,随便起一个;
  • sense:模型的类型,pl.LpMinimize是求目标函数的最小值,pl.LpMaximize 是求最大值

3.2 定义决策变量

# Define the decision variables
x = pl.LpVariable(name='x')
y = pl.LpVariable(name='y')

如果你的变量比较少的话可以简单这么写。这个意思是定义了两个浮点数变量,取值范围是整个实数域。注意等号左边的变量才是你在之后的计算式中使用的符号,而参数 name 只有在最后打印结果的时候才会被打印出来。另外如果你对变量有其他要求的话可以添加以下参数:

  • lowBound:变量的最小取值(不写的话默认负无穷);
  • upBound:变量的最大取值(默认正无穷);
  • cat:变量的类型,有 pl.Binary 逻辑变量、pl.Integer 整数、pl.Continuous 实数(默认值);

如果你的变量比较多而不得不用 1, 2, 3…… 来编号,可以采用类似这样的写法:

# Define the decision variables
x = {i: pl.LpVariable(name=f"x{i}", lowBound=0, cat=pl.LpInteger) for i in range(1, 9)}

这是一次定义 8 个变量并保存在一个类似数组的结构中,变量都是正整数,分别用 x[1],x[2], ..., x[8] 表示,依次命名为 x1, x2,..., x8。

注意 range(left, right) 表示的区间是左闭右开。

3.3 添加约束条件

# Add constraints
model += (2 * x + 3 * y - 6 >= 0, "constrain_1")
model += (x + 3 * y - 3 == 0, "constrain_2")

没错!如你所见就是这么简单,括号里第一个变量就是你的约束不等式等式,第二个变量是你的自定义的约束名(可以起一个有意义的名字,当然也可以省略)。

由于一些比较数学的原因,约束条件里是不能使用大于号“>”或小于号“<”的。

如果你像前面一样把变量定义在了数组中,那么可以直接用方括号调用:

model += (2 * x[1] + 3 * x[2] - 6 >= 0)

3.4 添加目标函数

# Set the objective
model += x + 3 * y

与前面添加约束条件不同,添加目标函数这一步不用加最外层的括号。

3.5 模型求解

# Solve the optimization problem
status = model.solve()

就写这一句话,调用 model 的 solve() 方法,并把结果保存在 status 中。

3.6 打印结果

# Get the results
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")

for var in model.variables():
    print(f"{var.name}: {var.value()}")

for name, constraint in model.constraints.items():
    print(f"{name}: {constraint.value()}")

然后你就能看到模型求解的结果了。

4.示例代码

4.1 高考题代码

首先解决一下 3.1 的高考题:

import pulp as pl

# 定义一个模型,命名为 "Model_3.1",求最大值
model = pl.LpProblem(name="Model_3.1", sense=pl.LpMaximize)

# 定义两个决策变量,取值为整个实数域
x = pl.LpVariable(name='x')
y = pl.LpVariable(name='y')

# 添加三个约束条件
model += (2 * x + 3 * y - 6 >= 0)
model += (x + y - 3 <= 0)
model += (y - 2 <= 0)

# 目标函数
model += x + 3 * y

# 求解
status = model.solve()

# 打印结果
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")

for var in model.variables():
    print(f"{var.name}: {var.value()}")

for name, constraint in model.constraints.items():
    print(f"{name}: {constraint.value()}")

查看结果的最后几行:

status: 1, Optimal
objective: 7.0
x: 1.0
y: 2.0
_C1: 2.0
_C2: 0.0
_C3: 0.0

最大值是7.0,在x=1.0,y=2.0 时取到。

4.2 汽车厂代码

import pulp as pl

# 定义一个模型,命名为 "Model_3.2",求最大值
model = pl.LpProblem(name="Model_3.2", sense=pl.LpMaximize)

# 定义三个决策变量,取值正整数
x = {i: pl.LpVariable(name=f"x{i}", lowBound=0, cat=pl.LpInteger) for i in range(1, 4)}

# 添加约束条件
model += (1.5 * x[1] + 3 * x[2] + 5 * x[3] <= 600)
model += (280 * x[1] + 250 * x[2] + 400 * x[3] <= 60000)

# 目标函数
model += 2 * x[1] + 3 * x[2] + 4 * x[3]

# 求解
status = model.solve()

# 打印结果
print(f"status: {model.status}, {pl.LpStatus[model.status]}")
print(f"objective: {model.objective.value()}")

for var in model.variables():
    print(f"{var.name}: {var.value()}")

for name, constraint in model.constraints.items():
    print(f"{name}: {constraint.value()}")

查看结果的最后几行:

status: 1, Optimal
objective: 632.0
x1: 64.0
x2: 168.0
x3: 0.0
_C1: 0.0
_C2: -80.0

三种车的产量分别取 64、168、0,最大收益 632 万元。

到此这篇关于Python+PuLP实现线性规划的求解的文章就介绍到这了,更多相关Python PuLP线性规划内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python+PuLP实现线性规划的求解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python+PuLP怎么实现线性规划

今天小编给大家分享一下Python+PuLP怎么实现线性规划的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1.PuLP 库的
2023-06-30

Python实现线性规划求解

线性规划标准形式:MATLAB-------------线性规划求解主要分 两个部分,目标函数(max,min)和约束条件(s.t.),求解时一般要化为MATLAB标准形式:求解用到的模块(scipy 和 numpy):from sci
2023-06-02

python中求解线性规划的包是什么

这篇文章主要介绍python中求解线性规划的包是什么,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!说明1、Scipy库提供简单的线性或非线性规划问题。但不能解决背包问题的0-1规划问题,或者整数规划问题,混合整数规划
2023-06-20

Python中怎么实现线性规划

这篇文章给大家介绍Python中怎么实现线性规划,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。 运筹学运筹学是一种科学的决策方法,它通常是在需要分配稀缺资源的条件下,寻求系统的优秀设计。科学的决策方法需要使用一个或多个
2023-06-16

python中如何实现线性规划

python中如何实现线性规划,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。说明1、图解法,用几何绘图的方法,求出最优解。中学就讲过这种方法,在经济学研究中非常
2023-06-20

python四种出行路线规划的实现

目录一、简介思路高德地图API二、获取经纬度三、路线规划(四种方式)获取出行路线数据处理四、演示效果五、结尾一、简介路径规划中包括步行、公交、驾车、骑行等不同方式,今天借助高德地图web服务api,实现出行路线规划。思路根据地点获取经纬度根
2022-06-02

python实现动态规划算法的示例代码

本文主要介绍了python实现动态规划算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-16

Python实现线性搜索算法详解

线性搜索是最简单的搜索算法,从数据集的开头开始,检查每一项数据,直到找到匹配项,一旦找到目标,搜索结束。线性搜索算法的缺点需要注意的是线性搜索算法尽管简单,但不适用数据大的情况,由于算法将每个数据一一比较,所以数据越多,耗时越长。线性
Python实现线性搜索算法详解
2024-01-23

python实现线性插值的示例

线性插值是针对一维数据的插值方法,它根据一维数据序列中需要插值的点的左右临近两个数据来进行数值估计,这篇文章主要介绍了python实现线性插值,需要的朋友可以参考下
2022-12-08

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录