我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python Pandas之DataFrame索引及选取数据

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python Pandas之DataFrame索引及选取数据

1.索引是什么

1.1 认识索引

先创建一个简单的DataFrame。

myList = [['a', 10, 1.1],
	  ['b', 20, 2.2],
	  ['c', 30, 3.3],
	  ['d', 40, 4.4]]
df1 = pd.DataFrame(data = myList)
print(df1)
--------------------------------
[out]:
   0   1    2
0  a  10  1.1
1  b  20  2.2
2  c  30  3.3
3  d  40  4.4

DataFrame中有两种索引:

  • 行索引(index):对应最左边那一竖列
  • 列索引(columns):对应最上面那一横行

两种索引默认均为从0开始的自增整数。

# 输出行索引
print(df1.index)
[out]:
RangeIndex(start=0, stop=4, step=1)
---------------------------------------
# 输出列索引
print(df1.columns)
[out]:
RangeIndex(start=0, stop=3, step=1)
---------------------------------------
# 输出所有的值
print(df1.values)
[out]:
array([['a', 10, 1.1],
       ['b', 20, 2.2],
       ['c', 30, 3.3],
       ['d', 40, 4.4]], dtype=object)

1.2 自定义索引

可以使用 index 这个参数指定行索引,columns 这个参数指定列索引。

df2 = pd.DataFrame(myList, 
		           index = ['one', 'two', 'three', 'four'], 
		           columns = ['char', 'int', 'float'])
print(df2)
-----------------------------------------------------------
[out]:
      char  int  float
one      a   10    1.1
two      b   20    2.2
three    c   30    3.3
four     d   40    4.4

输出此时的行索引和列索引:

# 输出行索引
print(df2.index)
[out]:
Index(['one', 'two', 'three', 'four'], dtype='object')
--------------------------------------------------------
# 输出列索引
print(df2.columns)
[out]:
Index(['char', 'int', 'float'], dtype='object')

2. 索引的简单使用

2.1 列索引

选择一列:

print(df2['char'])
print(df2.char)
# 两种方式输出一样
[out]:
one      a
two      b
three    c
four     d
Name: char, dtype: object

注意此时方括号里面只传入一个字符串’char’,这样选出来的一列,结果的类型为Series

print(df2['char'])
print(df2.char)
# 两种方式输出一样
[out]:
one      a
two      b
three    c
four     d
Name: char, dtype: object

选择多列:

print(df2[['char', 'int']])
[out]: 
      char   int
one      a   10
two      b   20
three    c   30
four     d   40

注意此时方括号里面传入一个列表 [‘char’, ‘int’],选出的结果类型为 DataFrame。
如果只想选出来一列,却想返回 DataFrame 类型怎么办?

print(df2[['char']])
[out]:
      char
one      a
two      b
three    c
four     d
---------------------------------------
type(df2[['char']])
[out]:pandas.core.frame.DataFrame

注意直接使用df2[0]取某一列会报错,除非columns是由下标索引组成的,比如df1那个样子,df1[0]就不会报错。

print(df1[0])
[out]:
0    a
1    b
2    c
3    d
Name: 0, dtype: object
-----------------------
print(df2[0])
[out]: 
KeyError: 0

2.2 行索引

2.2.1 使用[ ]

区别于选取列,此种方式[ ]中不再单独的传入一个字符串,而是需要使用冒号切片。

选取行标签从 ’two’ 到 ’three’ 的多行数据

print(df2['two': 'three'])
[out]:
      char  int  float
two      b   20    2.2
three    c   30    3.3

选取行标签为’two’这一行数据

# 此时返回的类型为DataFrame
print(df2['two': 'two'])
[out]:
      char  int  float
two      b   20    2.2

在[ ]中不仅可以传入行标签,还可以传入行的编号。

选取从第1行到第3行的数据(编号从0开始)

print(df2[1:4])
[out]:
      char  int  float
two      b   20    2.2
three    c   30    3.3
four     d   40    4.4

可以看到选取的数据是不包含方括号最右侧的编号所对应的数据的。

选取第1行的数据

print(df2[1:2])
[out]:
    char  int  float
two    b   20    2.2

2.2.2 使用.loc()和.iloc()

区别就是.loc()是根据行索引和列索引的值来选取数据,而.iloc()是根据从0开始的下标位置来进行索引的。

选取行:

使用.loc()

print(df2.loc['one'])
[out]:
char       a
int       10
float    1.1
Name: one, dtype: object
-------------------------------------------
print(df2.loc[['one', 'three']])
[out]:
      char  int  float
one      a   10    1.1
three    c   30    3.3

使用.iloc()

print(df2.iloc[0])
[out]:
char       a
int       10
float    1.1
Name: one, dtype: object
-------------------------------------------
print(df2.iloc[[0, 2]])
[out]:
      char  int  float
one      a   10    1.1
three    c   30    3.3

到此这篇关于python Pandas之DataFrame索引及选取数据的文章就介绍到这了,更多相关python DataFrame索引 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python Pandas之DataFrame索引及选取数据

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python数据分析:pandas中Dataframe的groupby与索引用法

Pandasgroupby操作允许根据键对DataFrame数据进行分组,而索引提供快速查找DataFrame特定行的机制。结合使用可高效分析大型数据集。groupby根据键分组数据,返回按键分组的组,可使用apply()/agg()/transform()方法对组应用聚合函数或操作。索引唯一标识每一行,可通过loc和iloc方法访问和检索行。结合groupby和索引,可以高效执行高级数据操作,如按组索引、迭代和过滤。
Python数据分析:pandas中Dataframe的groupby与索引用法
2024-04-02

Python数据分析之Pandas Dataframe条件筛选遍历的方法

这篇文章主要介绍“Python数据分析之Pandas Dataframe条件筛选遍历的方法”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe条件筛选
2023-06-30

Python数据分析之Pandas Dataframe怎么修改、删除及查询

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么修改、删除及查询”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么修
2023-06-30

Python数据分析之Pandas Dataframe如何自定义

今天小编给大家分享一下Python数据分析之Pandas Dataframe如何自定义的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解
2023-06-30

python数据分析之pandas数据选

Pandas是作为Python数据分析著名的工具包,提供了多种数据选取的方法,方便实用。本文主要介绍Pandas的几种数据选取的方法。  Pandas中,数据主要保存为Dataframe和Series是数据结构,这两种数据结构数据选取的方式
2023-01-30

Python数据分析之pandas读取数据

一、三种数据文件的读取二、csv、tsv、txt 文件读取 1)CSV文件读取: 语法格式:pandas.read_csv(文件路径) CSV文件内容如下:import pandas as pd file_path = "e:\\panda
2022-06-02

Python数据分析之Pandas Dataframe怎么合并和去重

这篇文章主要介绍“Python数据分析之Pandas Dataframe怎么合并和去重”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python数据分析之Pandas Dataframe怎么合并和去
2023-06-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录