我的编程空间,编程开发者的网络收藏夹
学习永远不晚

TensorFlow数据集(二)——数据

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

TensorFlow数据集(二)——数据

参考书

《TensorFlow:实战Google深度学习框架》(第2版)

一个使用数据集进行训练和测试的完整例子。

#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# coding=utf-8 

"""
@author: Li Tian
@contact: 694317828@qq.com
@software: pycharm
@file: dataset_test5.py
@time: 2019/2/12 13:45
@desc: 使用数据集实现数据输入流程
"""

import tensorflow as tf
from figuredata_deal.figure_deal_test2 import preprocess_for_train


# 列举输入文件。训练和测试使用不同的数据
train_files = tf.train.match_filenames_once('./train_file-*')
test_files = tf.train.match_filenames_once('./test_files-*')


# 定义parser方法从TFRecord中解析数据。这里假设image中存储的是图像的原始数据,
# label为该样例所对应的标签。height、width和channels给出了图片的维度。
def parser(record):
    features = tf.parse_single_example(
        record,
        features={
            'image': tf.FixedLenFeature([], tf.string),
            'label': tf.FixedLenFeature([], tf.int64),
            'height': tf.FixedLenFeature([], tf.int64),
            'width': tf.FixedLenFeature([], tf.int64),
            'channels': tf.FixedLenFeature([], tf.int64),
        }
    )

    # 从原始图像数据解析出像素矩阵,并根据图像尺寸还原图像。
    decoded_image = tf.decode_raw(features['image'], tf.uint8)
    decoded_image.set_shape([features['height'], features['width'], features['channels']])
    label = features['label']
    return decoded_image, label


# 定义神经网络输入层图片的大小
image_size = 299
# 定义组合数据batch的大小
batch_size = 100
# 定义随机打乱数据时buffer的大小
shuffle_buffer = 10000

# 定义读取训练数据的数据集
dataset = tf.data.TFRecordDataset(train_files)
dataset = dataset.map(parser)

# 对数据依次进行预处理、shuffle和batching操作。preprocess_for_train为前面介绍的
# 图像预处理程序。因为上一个map得到的数据集中提供了decoded_image和label两个结果,所以这个
# map需要提供一个有2个参数的函数来处理数据。在下面的代码中,lambda中的image代表的就是第一个map返回的
# decoded_image,label代表的就是第一个map返回的label。在这个lambda表达式中我们首先将decoded_image
# 在传入preprocess_for_train来进一步对图像数据进行预处理。然后再将处理好的图像和label组成最终的输出。
dataset = dataset.map(
    lambda image, label: (
        preprocess_for_train(image, image_size, image_size, None), label
    )
)
dataset = dataset.shuffle(shuffle_buffer).batch(batch_size)

# 重复NUM_EPOCHS个epoch。在前面TRAINING_ROUNDS指定了训练的轮数,
# 而这里指定了整个数据集重复的次数,它也间接地确定了训练的论述。
NUM_EPOCHS = 10
dataset = dataset.repeat(NUM_EPOCHS)

# 定义数据集迭代器。虽然定义数据集的时候没直接使用placeholder来提供文件地址,但是
# tf.train.match_filenames_once方法得到的结果和与placeholder的机制类似,也需要初始化。
# 所以这里使用的是initializable_iterator
iterator = dataset.make_initializable_iterator()
image_batch, label_batch = iterator.get_next()

# 定义神经网络的结果以及优化过程。这里与前面的相同。
learning_rate = 0.01
logit = inference(image_batch)
loss = calc_loss(logit, label_batch)
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

# 定义测试用的Dataset。与训练时不同,测试数据的Dataset不需要经过随机翻转等预处理操作,
# 也不需要打乱顺序和重复多个epoch。这里使用于训练数据相同的parser进行解析,调整分辨率
# 到网络输入层大小,然后直接进行batching操作。
test_dataset = tf.data.TFRecordDataset(test_files)
test_dataset = test_dataset.map(parser).map(
    lambda image, label: (
        tf.image.resize_images(image, [image_size, image_size]), label
    )
)
test_dataset = test_dataset.batch(batch_size)

# 定义测试数据上的迭代器
test_iterator = test_dataset.make_initializable_iterator()
test_image_batch, test_label_batch = test_iterator.get_next()

# 定义预测结果为logit值最大的分类
test_logit = inference(test_image_batch)
predictions = tf.argmax(test_logit, axis=-1, output_type=tf.int32)

# 声明会话并运行神经网络的优化过程
with tf.Session() as sess:
    # 初始化变量
    sess.run((
        tf.global_variables_initializer(),
        tf.local_variables_initializer()
    ))

    # 初始化训练数据的迭代器。
    sess.run(iterator.initializer)

    # 循环进行训练,知道数据集完成输入,抛出OutOfRangeError错误
    while True:
        try:
            sess.run(train_step)
        except tf.errors.OutOfRangeError:
            break

    # 初始化测试数据的迭代器
    sess.run(test_iterator.initializer)

    # 获取预测结果
    test_results = []
    test_labels = []
    while True:
        try:
            pred, label = sess.run([predictions, test_label_batch])
            test_results.extend(pred)
            test_labels.extend(label)
        except tf.errors.OutOfRangeError:
            break

    # 计算准确率
    correct = [float(y == y_) for (y, y_) in zip(test_results, test_labels)]
    accuracy = sum(correct) / len(correct)
    print("Test accuracy is: ", accuracy)

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

TensorFlow数据集(二)——数据

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

TensorFlow数据集(二)——数据

参考书《TensorFlow:实战Google深度学习框架》(第2版)一个使用数据集进行训练和测试的完整例子。#!/usr/bin/env python# -*- coding: UTF-8 -*-# coding=utf-8 """@au
2023-01-30

TensorFlow数据集(一)——数据

参考书《TensorFlow:实战Google深度学习框架》(第2版)例子:从一个张量创建一个数据集,遍历这个数据集,并对每个输入输出y = x^2 的值。#!/usr/bin/env python# -*- coding: UTF-8 -
2023-01-30

tensorflow怎么加载本地数据集

要加载本地数据集到TensorFlow中,可以使用tf.data.Dataset.from_tensor_slices()函数。首先,将本地数据集加载到numpy数组中,然后使用from_tensor_slices()函数将numpy数组转
tensorflow怎么加载本地数据集
2024-03-15

hudi clustering 数据聚集(二)

小文件合并解析执行代码:import org.apache.hudi.QuickstartUtils._import scala.collection.JavaConversions._import org.apache.spark.sql.SaveMode.
hudi clustering 数据聚集(二)
2017-02-06

数据采集实战(二)-

1. 概述京粉(https://union.jd.com/)是京东联盟下的网站,通过分享其中的商品链接可以赚取佣金,类似淘客联盟。采集京粉的商品,既可以练习 puppeteer的使用,平时想在京东购物时,也能用得上(采集看看有类似商品的价格和评价)。2. 主要
数据采集实战(二)-
2015-01-09

如何在TensorFlow中使用数据集API加载和处理数据

在TensorFlow中,可以使用数据集API来加载和处理数据。下面是一个简单的例子,展示如何使用数据集API加载和处理数据:import tensorflow as tf# 创建一个数据集data = tf.data.Dataset.
如何在TensorFlow中使用数据集API加载和处理数据
2024-03-01

tensorflow数据集制作的方法是什么

在TensorFlow中,制作数据集通常需要遵循以下步骤:数据准备:首先要准备好训练数据和标签数据。数据可以是图片、文本等形式,标签可以是分类标签、回归标签等。数据处理:对数据进行预处理,例如对图片数据进行归一化、resize等操作,对文本
tensorflow数据集制作的方法是什么
2024-03-15

第03期:Prometheus 数据采集(二)

本期作者:罗韦爱可生上海研发中心成员,研发工程师,主要负责 DMP 平台监控告警功能的相关工作。上篇文章(第02期:数据采集一)介绍了 Prometheus 数据采集的格式和分类,本文会对采集过程进行详细的介绍。Prometheus 数据采集过程介绍Prome
第03期:Prometheus 数据采集(二)
2021-09-25

tensorflow使用tf.data.Dataset处理大型数据集问题

这篇文章主要介绍了tensorflow使用tf.data.Dataset处理大型数据集问题,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2022-12-16

TensorFlow中Softmax逻辑回归如何识别手写数字MNIST数据集

今天就跟大家聊聊有关TensorFlow中Softmax逻辑回归如何识别手写数字MNIST数据集,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。基于MNIST数据集的逻辑回归模型做十分
2023-06-25

TensorFlow-slim包进行图像数据集分类---具体流程

TensorFlow中slim包的具体用法 1、训练脚本文件(该文件包含数据下载打包、模型训练,模型评估流程)3、模型训练1、数据集相关模块:2、设置网络模型模块3、数据预处理模块4、定义损失loss5、定义优化器模块 本次
2023-08-30

TensorFlow车牌识别完整版代码(含车牌数据集)

下面是一个使用TensorFlow实现车牌识别的完整代码示例,包括车牌数据集的下载和数据预处理。请注意,这只是一个简单的示例,你可能需要根据自己的需求对代码进行适当修改。```pythonimport tensorflow as tffro
2023-08-15

剖析数据的数据采集

如果大家还想了解更多方面的详细内容的话呢,不妨关注编程学习网教育平台,在这里你肯定会有意想不到的收获的!
剖析数据的数据采集
2024-04-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录